ECTS - Introduction to Sustainability

Introduction to Sustainability (MAN408) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Introduction to Sustainability MAN408 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type N/A
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Demonstration, Discussion, Question and Answer, Observation Case Study, Problem Solving, Team/Group.
Course Coordinator
Course Lecturer(s)
  • Assoc. Prof. Dr. Ceyhan Çiğdemoğlu
Course Assistants
Course Objectives Sustainability lies at the intersection of the environment, society and economics. This course explores the concepts of sustainability to increase knowledge and awareness of students. The course also aims to promote students’ critical thinking on what Sustainability really mean, what actions individuals and corporations can do for sustainable development
Course Learning Outcomes The students who succeeded in this course;
  • Integrate the meaning of sustainability in your life and your values
  • Evaluate perspectives on sustainability regarding environmental, economic and social considerations
  • Use metrics for measuring components of sustainability
  • Explain sustainability actions at the local, state, country, and global scales
Course Content What is sustainability; sustainability and related polices; climate and global change; environmental and resource economics; sustainable business practices; sustainability: ethics, culture, and history; sustainable development; sustainability indicators.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction to the Course, Introduction to what is sustainability
2 The Evolution of Environmental Policy, Environmental Risk Management, Sustainability and Public Policy, Public Health and Sustainability
3 Climate and Global Change, Climate Change, Energy and Sustainable Development, Climate Change: A Threat to Sustainable Development, • Adaptation to Current and Future Climate Regimes • The cause: The greenhouse effect • The consequences: crop failure • Solutions technology and lifestyle changes| Mitigating Climate Change • Political & economic instruments
4 Biosphere, Physical Resources: Water, Pollution, and Minerals Water Cycle and Fresh Water Supply, Water Pollution, Mineral Resources: Formation, Mining, Environmental Impact
5 Environmental and Resource Economics, Tragedy of the Commons
6 Sustainable Business Practices: • Corporate Social Responsibility • Corporate governance • Sustainable products and services
7 Sustainable Business Practices Continued: • Business and Environment • Corporations and Ecological Sustainability
8 MIDTERM EXAM
9 Sustainability: Ethics, Culture, and History • Sustainability Studies: A Systems Literacy Approach • Sustainability Ethics
10 The Concept of Sustainable Development • The Definition of Sustainable Development as an Ambiguous Compromise • The Triple P • An Introduction to Economic Growth • Questions about Sustainable Development • Timeline for Sustainable Development
11 Geographic Perspectives and Sustainable Development • Overview • Geography & Pursuit of More Sustainable Development The UN Sustainable Development Topics • Sustainable Development Goals • The United Nations and Global Sustainability
12 Making Cities More Sustainable • The Patterns of Urbanization Around the World • Urban Problems & Challenges • Participation in the Search for Sustainable Urban Development • Resilient cities – What makes a city sustainable, green, and resilient?
13 Tools, Systems, and Innovation for Sustainability [Measuring Sustainability] • How do we measure sustainability? • Sustainability Indicators
14 Planetary Boundaries Concept • Growth Dynamics • Energy Case • Population dynamics
15 Presentations
16 Presentations

Sources

Other Sources 1. Sustainability: A Comprehensive Foundation by Tom Theis and Jonathan Tomkin, Editors
2. Brinkmann, R. (2016). Introduction to sustainability. John Wiley & Sons
3. Other related course materials provided by instructor.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 1 30
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 30
Final Exam/Final Jury 1 40
Toplam 3 100
Percentage of Semester Work 60
Percentage of Final Work 40
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 An ability to apply airframe and powerplant maintenance skills for the candidates to prepare for the EASA JAR 66 certification.
2 To learn the technical terms and concepts in order to communicate verbally and in writing about the maintenance procedures, reports and results.
3 An ability to apply of knowledge and skills in solving aircraft maintenance problems.
4 An ability to understand and apply fundamental sciences and forethoughts the facts and precautions (such as physics).
5 The knowledge of operating principles of aircraft, and fundamental principles of aircraft flight and maintenance.
6 A standard and widespread understanding of professional and ethical responsibility.
7 Knowledge of the importance of the application of maintenance procedures correctly.
8 Knowledge of personal safety.
9 An ability to perform inspection techniques.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class
Presentation/Seminar Prepration 1 10 10
Project
Report
Homework Assignments 1 20 20
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 22 22
Prepration of Final Exams/Final Jury 1 25 25
Total Workload 125