Operating Systems (CMPE431) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Operating Systems CMPE431 3 2 0 4 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type N/A
Course Level Natural & Applied Sciences Master's Degree
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives This course is designed to teach fundamental issues of operating systems such as processes, threads, scheduling, synchronization and deadlocks, and managing resources.
Course Learning Outcomes The students who succeeded in this course;
  • Describe the basic concepts of modern operating systems
  • Illustrate the concept of a process and concurrency (synchronization, mutual exclusion, and deadlocks)
  • Describe deadlock avoidance, detection, prevention and recovery
  • Identify solution strategies, including semaphores, monitors, condition variables and threads
  • Identify scheduling policies
  • Discuss the concepts of physical memory and memory management
Course Content Basic design principles of operating systems, single-user systems, command interpreter, semaphores, deadlock detection, recovery, prevention and avoidance; multi-user OS; resource managers, processor management and algorithms, memory management: partitioning, paging, segmentation and thrashing; device management; interrupt handlers, device drivers

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction to OS Chapters 1,2. (main text)
2 OS Structures, Processes Chapters 2.
3 Processes Chapter 3
4 Threads Chapter 4
5 Scheduling Chapter 5.
6 Scheduling Chapter 5.
7 Process Synchronization Chapter 6.
8 Process Synchronization Chapter 6.
9 Deadlocks Chapter 7
10 Deadlocks Chapter 7
11 Memory Management Chapter 8
12 Virtual Memory Chapter 9
13 File Systems Chapter 10-11
14 I/O System Chapter 13

Sources

Course Book 1. Operating System Concepts, 7th Edition, John Wiley and Sons, 2005, Silberschatz, Galvin, and Gagne, ISBN 0-471-69466-5.
Other Sources 2. 1. Modern Operating Systems, Andrew S. Tanenbaum, 2nd edition, Prentice-Hall, 2001.
3. 2. Operating Systems, Gary Nutt, Addison-Wesley, 2004.
4. 3. Operating Systems: Internals and Design Principles, 6/e, Prentice Hall, by Stallings, ISBN-10: 0136006329 | ISBN-13: 9780136006329
5. 4. Operating Systems, 3/e, by Deitel, Deitel & Choffnes, Prentice Hall, ISBN-10: 0131828274 | ISBN-13: 97801318282785.
6. 5. Operating Systems: A Systematic View, 6/e by Davis & Rajkumar, Addison-Wesley , ISBN-10: 0321267516 | ISBN-13: 9780321267511

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory 1 20
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics 2 10
Homework Assignments - -
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 30
Final Exam/Final Jury 1 40
Toplam 5 100
Percentage of Semester Work 60
Percentage of Final Work 40
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 An ability to apply knowledge of mathematics, science, and engineering.
2 An ability to design and conduct experiments, as well as to analyse and interpret data.
3 An ability to design a system, component, or process to meet desired needs.
4 An ability to function on multi-disciplinary domains.
5 An ability to identify, formulate, and solve engineering problems.
6 An understanding of professional and ethical responsibility.
7 An ability to communicate effectively.
8 Recognition of the need for, and an ability to engage in life-long learning.
9 A knowledge of contemporary issues.
10 An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.
11 Skills in project management and recognition of international standards and methodologies
12 An ability to produce engineering products or prototypes that solve real-life problems.
13 Skills that contribute to professional knowledge.
14 An ability to make methodological scientific research.
15 An ability to produce, report and present an original or known scientific body of knowledge.
16 An ability to defend an originally produced idea.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 5 80
Laboratory 1 4 4
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 1 16
Presentation/Seminar Prepration
Project
Report
Homework Assignments 2 3 6
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 6 12
Prepration of Final Exams/Final Jury 1 8 8
Total Workload 126