ECTS - Optical Communication Systems

Optical Communication Systems (EE406) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Optical Communication Systems EE406 Area Elective 3 0 0 3 5
Pre-requisite Course(s)
EE316 ve EE310
Course Language English
Course Type Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Demonstration, Drill and Practice.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives Introduce the components of an optical communications system and to describe typical systems which employ optical techniques
Course Learning Outcomes The students who succeeded in this course;
  • Identify the main parameters of laser diodes, optical fiber, and optical receivers, and analyze how different structures and materials influence the parameters of these components
  • Analyze the operation of LEDs, laser diodes, and PIN photodetectors (spectral properties, bandwidth, and circuits) and apply in optical systems
  • Explain the principles of, compare and contrast single- and multi-mode optical fiber characteristics
  • Analyze and design optical communication
  • Specify active and passive optical components for analog and digital links.
Course Content Optical fiber structures, waveguiding and fabrication, attenuation, signal distortion, mode coupling, LEDs and LASERs, power launching and coupling, photo detectors, optical receivers, point- to ?point links, line coding, coherent optical systems, photonic switching, unguided optical communication systems.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Overview of Optical Fiber Communication Glance this week’s topics from the lecture
2 Optical Fibers: Structures, Waveguiding Review last week and Glance this week’s topics from the lecture
3 Signal Degradation in Optical Fibers Review last week and Glance this week’s topics from the lecture
4 Optical Sources, Power Launching and Coupling Review last week and Glance this week’s topics from the lecture
5 Optical Sources, Power Launching and Coupling Review last week and Glance this week’s topics from the lecture
6 Photodetectors Review last week and Glance this week’s topics from the lecture
7 Optical Receiver Operation Review last week and Glance this week’s topics from the lecture
8 Optical Receiver Operation Review last week and Glance this week’s topics from the lecture
9 Digital Transmission Systems Review last week and Glance this week’s topics from the lecture
10 Analog Systems Review last week and Glance this week’s topics from the lecture
11 WDM Concepts and Components Review last week and Glance this week’s topics from the lecture
12 Optical Amplifiers Review last week and Glance this week’s topics from the lecture
13 Optical Networks Review last week and Glance this week’s topics from the lecture
14 Measurement Standards, Eye patterns, attenuation, dispersion measurements. Review last week and Glance this week’s topics from the lecture
15 Final examination period Review last week and Glance this week’s topics from the lecture
16 Final examination period Review last week and Glance this week’s topics from the lecture

Sources

Course Book 1. Gerd Keiser, 'Optical Fiber Communications' third edition, McGraw-Hill (2000)
Other Sources 2. Govind P. Agrawal, “Fiber-Optic Communication Systems”, 2nd ed., JohnWiley & Sons, Inc. (1997)

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 5 30
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 4
Final Exam/Final Jury 1 3
Toplam 8 37
Percentage of Semester Work 100
Percentage of Final Work 0
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Possesses sufficient knowledge in mathematics, natural sciences, and discipline-specific topics in Electrical and Electronics Engineering; uses this theoretical and practical knowledge to solve complex engineering problems. X
2 Identifies, defines, formulates, and solves complex engineering problems; selects and applies appropriate analytical and modeling methods for this purpose. X
3 Designs complex systems, processes, devices, or products under realistic constraints and conditions to meet specific requirements; applies modern design methods for this purpose. (Realistic constraints and conditions may include factors such as economy, environmental issues, sustainability, manufacturability, ethics, health, safety, social and political issues, depending on the nature of the design.)
4 Selects and uses modern techniques and tools necessary for the analysis and solution of complex problems encountered in engineering applications; effectively uses information technologies. X
5 Designs experiments, conducts tests, collects data, analyzes, and interprets results to investigate complex engineering problems or discipline-specific research topics. X
6 Works effectively in disciplinary and interdisciplinary teams; develops the ability to work independently.
7 Communicates effectively in both written and verbal forms; possesses proficiency in at least one foreign language; writes effective reports, understands written reports, prepares design and production reports, delivers effective presentations, and gives and receives clear instructions.
8 Recognizes the need for lifelong learning; accesses information, follows developments in science and technology, and continuously renews oneself.
9 Acts in accordance with ethical principles, assumes professional and ethical responsibility, and possesses knowledge about the standards used in engineering practices.
10 Possesses knowledge about professional practices such as project management, risk management, and change management; gains awareness of entrepreneurship and innovation; understands the principles of sustainable development.
11 Understands the universal and societal impacts of engineering practices on health, environment, and safety; recognizes the contemporary issues reflected in the field of engineering and understands the legal implications of engineering solutions.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class
Presentation/Seminar Prepration
Project
Report
Homework Assignments 6 10 60
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 5 10
Prepration of Final Exams/Final Jury 1 10 10
Total Workload 128