ECTS - Communication Electronics
Communication Electronics (EE410) Course Detail
Course Name | Course Code | Season | Lecture Hours | Application Hours | Lab Hours | Credit | ECTS |
---|---|---|---|---|---|---|---|
Communication Electronics | EE410 | Area Elective | 3 | 0 | 0 | 3 | 5 |
Pre-requisite Course(s) |
---|
EE313 ve EE316 |
Course Language | English |
---|---|
Course Type | Elective Courses |
Course Level | Bachelor’s Degree (First Cycle) |
Mode of Delivery | Face To Face |
Learning and Teaching Strategies | Lecture, Demonstration, Discussion, Experiment, Question and Answer, Drill and Practice, Problem Solving. |
Course Lecturer(s) |
|
Course Objectives | To give an understand about circuits used to generate continuous wave and digital modulations. Understand the sensitivity, selectivity and dynamic range of a radio receiver. Understand the circuit design of Phase-Lock Loop (PLL), frequency synthesizer, Low-Noise Amplifier (LNA), Power Amplifier. Understand the fundamental design considerations of digital communication systems. |
Course Learning Outcomes |
The students who succeeded in this course;
|
Course Content | Communication systems overview. System blocks; transmitters and receivers, modulation and modulator circuits. Oscillators, filters and Phase Lock Loop (PLL) circuits, frequency synthesizer and amplifier design for communication systems of a broad range of frequencies. Project assignments on the design of communications circuits and/or subcircuits. |
Weekly Subjects and Releated Preparation Studies
Week | Subjects | Preparation |
---|---|---|
1 | Introduction to Communication Electronics. Technology. LC circuits, Oscillators, Noise, Noise measurements. | Please, review the lecture notes and glance this week’s topics from your text book. |
2 | Amplitude Modulation: Transmission. Circuits for AM generation, AM transmitter Systems, Transmitter Measurements. | Please, review the lecture notes and glance this week’s topics from your text book. |
3 | Amplitude Modulation: Reception. AM detection, Superheterodyne receivers, Automatic Gain Control, AM Receiver Systems. | Please, review the lecture notes and glance this week’s topics from your text book. |
4 | Single-Sideband (SSB) Communications. Sideband generation (Balanced Modulator), SSB filters, SSB Transmitters, SSB Demodulation, SSB Receivers. | Please, review the lecture notes and glance this week’s topics from your text book. |
5 | Frequency Modulation: Transmission. FM generation (Direct and indirect FM Generation), Phase-Locked Loop FM transmitter, Stereo FM. | Please, review the lecture notes and glance this week’s topics from your text book. |
6 | Frequency Modulation: Transmission. FM generation (Direct and indirect FM Generation), Phase-Locked Loop FM transmitter, Stereo FM. | Please, review the lecture notes and glance this week’s topics from your text book. |
7 | Frequency Modulation: Reception. RF amplifiers, Limiters, Discriminators, Phase-Locked Loop, Stereo Demodulation. | Please, review the lecture notes and glance this week’s topics from your text book. |
8 | Frequency Modulation: Reception. RF amplifiers, Limiters, Discriminators, Phase-Locked Loop, Stereo Demodulation. | Please, review the lecture notes and glance this week’s topics from your text book. |
9 | Frequency synthesis, Receiver noise, sensitivity, Dynamic range, High frequency communication modules. | Please, review the lecture notes and glance this week’s topics from your text book. |
10 | Frequency synthesis, Receiver noise, sensitivity, Dynamic range, High frequency communication modules. | Please, review the lecture notes and glance this week’s topics from your text book. |
11 | Data Transmission, Time-Division Multiple Access, Digital Signal Encoding, Computer Communication. | Please, review the lecture notes and glance this week’s topics from your text book. |
12 | Digital Modulation Techniques, Spread-Spectrum Techniques, Orthogonal Frequency Division Multiplexing. | Please, review the lecture notes and glance this week’s topics from your text book. |
13 | Basic Telephone Operation, Mobile Communications, Local Area Networks, LAN Interconnection. | Please, review the lecture notes and glance this week’s topics from your text book. |
14 | Television Receivers, Digital Television, The Front End and IF Amplifiers. | Please, review the lecture notes and glance this week’s topics from your text book. |
15 | Final examination period | Review of topics |
16 | Final examination period | Review of topics |
Sources
Course Book | 1. Modern Electronic Communication, J.S.Beasley and G.M.Miller, 8th edition, Prentice Hall, 2005. |
---|---|
Other Sources | 2. Communication Electronics, L.E. Frenzel, McGraw Hill, 3rd edition, 2000. |
3. Modern Communication Circuits, J.R.Smith, 2nd edition, McGraw Hill, 1998. | |
4. Microelectronic Circuits and Devices, M.N.Horenstein, 2nd edition, Prentice Hall, 1996. |
Evaluation System
Requirements | Number | Percentage of Grade |
---|---|---|
Attendance/Participation | - | - |
Laboratory | - | - |
Application | - | - |
Field Work | - | - |
Special Course Internship | - | - |
Quizzes/Studio Critics | - | - |
Homework Assignments | - | - |
Presentation | - | - |
Project | 1 | 20 |
Report | - | - |
Seminar | - | - |
Midterms Exams/Midterms Jury | 2 | 40 |
Final Exam/Final Jury | 1 | 40 |
Toplam | 4 | 100 |
Percentage of Semester Work | 60 |
---|---|
Percentage of Final Work | 40 |
Total | 100 |
Course Category
Core Courses | X |
---|---|
Major Area Courses | |
Supportive Courses | |
Media and Managment Skills Courses | |
Transferable Skill Courses |
The Relation Between Course Learning Competencies and Program Qualifications
# | Program Qualifications / Competencies | Level of Contribution | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Possesses sufficient knowledge in mathematics, natural sciences, and discipline-specific topics in Electrical and Electronics Engineering; uses this theoretical and practical knowledge to solve complex engineering problems. | X | ||||
2 | Identifies, defines, formulates, and solves complex engineering problems; selects and applies appropriate analytical and modeling methods for this purpose. | X | ||||
3 | Designs complex systems, processes, devices, or products under realistic constraints and conditions to meet specific requirements; applies modern design methods for this purpose. (Realistic constraints and conditions may include factors such as economy, environmental issues, sustainability, manufacturability, ethics, health, safety, social and political issues, depending on the nature of the design.) | X | ||||
4 | Selects and uses modern techniques and tools necessary for the analysis and solution of complex problems encountered in engineering applications; effectively uses information technologies. | X | ||||
5 | Designs experiments, conducts tests, collects data, analyzes, and interprets results to investigate complex engineering problems or discipline-specific research topics. | X | ||||
6 | Works effectively in disciplinary and interdisciplinary teams; develops the ability to work independently. | |||||
7 | Communicates effectively in both written and verbal forms; possesses proficiency in at least one foreign language; writes effective reports, understands written reports, prepares design and production reports, delivers effective presentations, and gives and receives clear instructions. | |||||
8 | Recognizes the need for lifelong learning; accesses information, follows developments in science and technology, and continuously renews oneself. | |||||
9 | Acts in accordance with ethical principles, assumes professional and ethical responsibility, and possesses knowledge about the standards used in engineering practices. | |||||
10 | Possesses knowledge about professional practices such as project management, risk management, and change management; gains awareness of entrepreneurship and innovation; understands the principles of sustainable development. | |||||
11 | Understands the universal and societal impacts of engineering practices on health, environment, and safety; recognizes the contemporary issues reflected in the field of engineering and understands the legal implications of engineering solutions. |
ECTS/Workload Table
Activities | Number | Duration (Hours) | Total Workload |
---|---|---|---|
Course Hours (Including Exam Week: 16 x Total Hours) | 16 | 3 | 48 |
Laboratory | |||
Application | |||
Special Course Internship | |||
Field Work | |||
Study Hours Out of Class | 5 | 5 | 25 |
Presentation/Seminar Prepration | |||
Project | 1 | 10 | 10 |
Report | |||
Homework Assignments | |||
Quizzes/Studio Critics | |||
Prepration of Midterm Exams/Midterm Jury | 2 | 14 | 28 |
Prepration of Final Exams/Final Jury | 1 | 15 | 15 |
Total Workload | 126 |