ECTS - Real Time Signal Processing

Real Time Signal Processing (EE426) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Real Time Signal Processing EE426 Area Elective 3 0 0 3 5
Pre-requisite Course(s)
EE306
Course Language English
Course Type Elective Courses
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Demonstration, Experiment, Drill and Practice, Team/Group, Project Design/Management.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives This course provides an introduction to the principles of real-time digital signal processing (DSP).The focus of this course is hands-on development of real-time signal processing algorithms using audio-based DSP kits in a laboratory environment
Course Learning Outcomes The students who succeeded in this course;
  • Describe the architecture and basic operation of fixed-point and foating-point DSPs
  • Perform worst-case timing analysis on real-time DSP systems
  • Develop and realize computationally effcient algorithms on the DSP platform (e.g. FFT, fast convolution)
  • Optimize DSP code (e.g. software pipelining)
  • Draw block diagrams of FIR and IIR filters under various realization structures and describe the advantages and disadvantages of each realization structure
  • Realize real-time FIR and IIR filter designs on the DSP platform, compare experimental results to theoretical expectations, and identify the source of performance discrepancies
Course Content Architecture, instruction set, and hardware and software development tools associated with the Texas Instruments TMS320C6x family of fixed and floating processors. Signal processing applications such as waveform generation, FIR and IIR digital filtering, and DFT and FFT based spectral analysis and filtering. Requires an extensive DSP project of the

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Course introduction, Introduction to the C6000 DSK, Code Composer Studio IDE, Matlab, and basic skills Glance at lecture notes
2 Sampling, quantization, and working with the AIC23 codec Review last week and Glance this week’s topics from the lecture
3 DSP basics, memory architecture, I/O, and interrupt data processing Review last week and Glance this week’s topics from the lecture
4 Review of FIR filtering. FIR fillter design techniques and tools Review last week and Glance this week’s topics from the lecture
5 FIR fillter realization structures and practical considerations Review last week and Glance this week’s topics from the lecture
6 Review of IIR filtering. IIR filter design techniques and tools Review last week and Glance this week’s topics from the lecture
7 IIR filter realization structures and practical considerations Review last week and Glance this week’s topics from the lecture
8 Writing effcient code: optimizing compiler, effect of data types and memory map Review last week and Glance this week’s topics from the lecture
9 Fetch and execute packets, pipelining. Assembly language programming Review last week and Glance this week’s topics from the lecture
10 Assembly language programming(cont’d) and code optimization Review last week and Glance this week’s topics from the lecture
11 Computation of the Fast Fourier Transform. (FFT) Review last week and Glance this week’s topics from the lecture
12 Applications of the FFT Review last week and Glance this week’s topics from the lecture
13 Adaptive filtering basics. The Least Mean Squares algorithm Review last week and Glance this week’s topics from the lecture
14 Other applications of DSP and review Review last week and Glance this week’s topics from the lecture
15 Final Examination Period Review of topics
16 Final Examination Period Review of topics

Sources

Course Book 1. Real-Time Digital Signal Processing: Based on the TMS320C6000, Nasser Kehtarnavaz

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory 10 20
Application 1 20
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 30
Final Exam/Final Jury 1 30
Toplam 14 100
Percentage of Semester Work 70
Percentage of Final Work 30
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Possesses sufficient knowledge in mathematics, natural sciences, and discipline-specific topics in Electrical and Electronics Engineering; uses this theoretical and practical knowledge to solve complex engineering problems. X
2 Identifies, defines, formulates, and solves complex engineering problems; selects and applies appropriate analytical and modeling methods for this purpose. X
3 Designs complex systems, processes, devices, or products under realistic constraints and conditions to meet specific requirements; applies modern design methods for this purpose. (Realistic constraints and conditions may include factors such as economy, environmental issues, sustainability, manufacturability, ethics, health, safety, social and political issues, depending on the nature of the design.) X
4 Selects and uses modern techniques and tools necessary for the analysis and solution of complex problems encountered in engineering applications; effectively uses information technologies. X
5 Designs experiments, conducts tests, collects data, analyzes, and interprets results to investigate complex engineering problems or discipline-specific research topics. X
6 Works effectively in disciplinary and interdisciplinary teams; develops the ability to work independently. X
7 Communicates effectively in both written and verbal forms; possesses proficiency in at least one foreign language; writes effective reports, understands written reports, prepares design and production reports, delivers effective presentations, and gives and receives clear instructions. X
8 Recognizes the need for lifelong learning; accesses information, follows developments in science and technology, and continuously renews oneself. X
9 Acts in accordance with ethical principles, assumes professional and ethical responsibility, and possesses knowledge about the standards used in engineering practices. X
10 Possesses knowledge about professional practices such as project management, risk management, and change management; gains awareness of entrepreneurship and innovation; understands the principles of sustainable development. X
11 Understands the universal and societal impacts of engineering practices on health, environment, and safety; recognizes the contemporary issues reflected in the field of engineering and understands the legal implications of engineering solutions. X

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application 4 3 12
Special Course Internship
Field Work
Study Hours Out of Class 14 3 42
Presentation/Seminar Prepration
Project
Report
Homework Assignments 4 3 12
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 4 8
Prepration of Final Exams/Final Jury 1 5 5
Total Workload 127