Solar Energy Technology (ENE308) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Solar Energy Technology ENE308 3 1 0 3 5
Pre-requisite Course(s)
ENE 203
Course Language English
Course Type N/A
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Demonstration, Discussion, Experiment, Question and Answer, Drill and Practice.
Course Coordinator
Course Lecturer(s)
  • Dr. Murat Durak
Course Assistants
Course Objectives To give necessary knowledge to the students on solar energy and its applications. The aim of the course is to help the development of the national industry. To help the development of the engineering skills of the students.
Course Learning Outcomes The students who succeeded in this course;
  • To give the theory and practice about Solar Energy to students.
  • Learning the usage of the methods for research, design and development in the analysis of the energy transformation at applications of solar energy.
Course Content Introduction to solar energy conversions, fundamentals of solar radiation, methods of solar collection and thermal conversion, solar heating systems, solar thermal power, capturing solar energy through biomass.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Fundamental Concepts and Solar Radiation Chapter 1
2 Solar Energy and Available Solar Radiation Chapter 2
3 Selected Heat Transfer Topics Chapter 3
4 Solar Angles and Extraterrestial Solar Radiation Chapter 4
5 Calculation of solar radiation on horizontal and tilted surfaces. Chapter 4
6 Atmospheric Solar Radiation Chapter 5
7 Transmission of solar radiation through glass and plastics. Chapter 6
8 Flat-Plate Collectors Chapter 6
9 Concentrating Collectors Chapter 7
10 Midterm Exam
11 Thermal Energy storage and Power generation using thermal energy Chapter 8
12 Solar Energy Applications Chapter 9
13 Solar Energy Applications Chapter 9
14 Solar Cells and direct conversion of solar energy into electrical energy Chapter 10
15 Solar Cells and direct conversion of solar energy into electrical energy, Design of PV systems Chapter 11
16 Final Exam

Sources

Course Book 1. J. Duffie and W. Beckman, Solar Engineering of Thermal Processes, 3rd Edition, John Wiley & Sons, Inc., 2006
Other Sources 2. R.C. Neville, Solar Energy Conversion-The Solar Cell, 2nd Edition, Elsevier, 1995

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory 6 10
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation - -
Project 1 20
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 20
Final Exam/Final Jury 1 50
Toplam 10 100
Percentage of Semester Work 50
Percentage of Final Work 50
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Adequate knowledge of subjects related to mathematics, natural sciences, and Electrical and Electronics Engineering discipline; ability to apply theoretical and applied knowledge in those fields to the solution of complex engineering problems. X
2 An ability to identify, formulate, and solve complex engineering problems, ability to choose and apply appropriate models and analysis methods for this. X
3 An ability to design a system, component, or process under realistic constraints to meet desired needs, and ability to apply modern design approaches for this.
4 The ability to select and use the necessary modern techniques and tools for the analysis and solution of complex problems encountered in engineering applications; the ability to use information technologies effectively
5 Ability to design and conduct experiments, collect data, analyze and interpret results for investigating complex engineering problems or discipline-specific research topics.
6 An ability to function on multi-disciplinary teams, and ability of individual working. X
7 Ability to communicate effectively orally and in writing; knowledge of at least one foreign language; active report writing and understanding written reports, preparing design and production reports, the ability to make effective presentation the ability to give and receive clear and understandable instructions.
8 Awareness of the necessity of lifelong learning; the ability to access knowledge, follow the developments in science and technology and continuously stay updated.
9 Acting compliant with ethical principles, professional and ethical responsibility, and knowledge of standards used in engineering applications.
10 Knowledge about professional activities in business, such as project management, risk management, and change management awareness of entrepreneurship and innovation; knowledge about sustainable development.
11 Knowledge about the impacts of engineering practices in universal and societal dimensions on health, environment, and safety. the problems of the current age reflected in the field of engineering; awareness of the legal consequences of engineering solutions.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 14 3 42
Laboratory 6 2 12
Application
Special Course Internship
Field Work
Study Hours Out of Class 14 2 28
Presentation/Seminar Prepration
Project 1 15 15
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 10 20
Prepration of Final Exams/Final Jury 1 15 15
Total Workload 132