Big Data Analytics (CMPE543) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Big Data Analytics CMPE543 Area Elective 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Elective Courses
Course Level Natural & Applied Sciences Master's Degree
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives The objective of this course is to present methods and technologies for sharing, visualizing, classifying, and analyzing big data.
Course Learning Outcomes The students who succeeded in this course;
  • Choose the right data format and service model to host and share big data.
  • Develop a noSQL-based web application.
  • Create queries by using Hadoop, Hive, and Shark.
  • Evaluate visualization strategies for exploring large datasets.
  • Build data processing pipelines by using MapReduce model and data transformation workflows
  • Analyze big data by using R
Course Content Infrastructure as a Service(IaaS), Hadoop framework, hive infrastrucure, data visualization, MapReduce model, NoSQL databases, large-scale data workflows, clustering, using R.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction Chapter 1 (Text Book)
2 Hosting and Sharing Big Data Chapter 2 (Text Book)
3 Non-relational databases Chapter 3 (Text Book)
4 Processing with Big Data Chapter 4 (Text Book)
5 Using Hadoop Chapter 5 (Text Book)
6 Building a Data Dashboard Chapter 6 (Text Book)
7 Visualization Big Data Chapter 7 (Text Book)
8 Map Reduce Model Chapter 8 (Text Book)
9 Map Reduce Model Chapter 8 (Text Book)
10 Data Transformation Workflows Chapter 9 (Text Book)
11 Data Classification with Mahout Chapter 10 (Text Book)
12 Statistical Analysis with R Chapter 11 (Text Book)
13 Building Analytics Workflows Chapter 12 (Text Book)
14 Building Analytics Workflows Chapter 12 (Text Book)
15 Review
16 Review

Sources

Course Book 1. Data Just Right: Introduction to Large-Scale Data & Analytics”, M. Manoochehri, Addison-Wesley, 2013
Other Sources 2. “Mining of Massive Datasets”, A. Rajaraman & J. D: Ullman, Cambridge University Press, 2011.
3. Apache Hadoop Project, available at http://hadoop.apache.org/

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation - -
Project 3 30
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 35
Final Exam/Final Jury 1 35
Toplam 5 100
Percentage of Semester Work 65
Percentage of Final Work 35
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Gains the ability to apply advanced computing and/or information knowledge in solving software engineering problems. X
2 Develops solutions using different technologies, software architectures and life-cycle approaches. X
3 Gains the ability to design, implement, and evaluate a software system, component, process, or program using modern techniques and engineering tools for software engineering practices. X
4 Gains ability to gather/acquire, analyze, interpret data and make decisions to understand software requirements. X
5 Gains skills of effective oral and written communication and critical thinking about a wide range of issues arising in the context of working constructively on software projects.
6 Gains the ability to access information to follow current developments in science and technology, conducts scientific research in the field of software engineering, and conducts a project.
7 Acquires an understanding of professional, legal, ethical and social issues and responsibilities related to Software Engineering.
8 Acquires project and risk management skills and gains awareness of the importance of entrepreneurship, innovation, and sustainable development, as well as international standards and methodologies.
9 Understands the impact of Software Engineering solutions in a global, environmental, societal and legal context while making decisions.
10 Gains awareness of the development, adoption, and ongoing support for the use of excellence standards in software engineering practices.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 2 32
Presentation/Seminar Prepration
Project
Report
Homework Assignments 3 5 15
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 10 10
Prepration of Final Exams/Final Jury 1 20 20
Total Workload 125