ECTS - Advanced Software Project Management

Advanced Software Project Management (SE552) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Advanced Software Project Management SE552 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type N/A
Course Level Natural & Applied Sciences Master's Degree
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives The objective of this course is to teach planning, monitoring and controlling software projects. It provides a knowledge base and practical skills for anyone interested in implementing or improving software project management techniques and practices in their organization.
Course Learning Outcomes The students who succeeded in this course;
  • Review the roles, responsibilities, and management methods of the software project manager
  • Discuss problems and concerns of software project manager
  • Explain scope, initiation, boundaries and stakeholders of a project
  • Define project organization, work breakdown structure and estimate project parameters
  • Use strategies and tactics involved in software project execution, people leadership and management
  • Review static V&V techniques
Course Content Introduction to project management; algorithmic cost estimation models; advanced cost estimation models; function points estimation; risk assessment; life cycle models; prototyping; management of software reuse; software maintenance; software maturity framework; case studies.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 An Overview of Project Planning Chapter 2 (Main text)
2 Program Management and Project Evaluation Chapter 3
3 Software Effort Estimation Chapter 5
4 Activity Planning Chapter 6,
5 Risk Analysis and Management Chapter 7
6 Resource Allocation Chapter 8
7 Project tracking and Control Chapter 9
8 Contract Management Chapter 10
9 Software Quality Assurance Chapter 12
10 Configuration Management Chapter 27 (other sources 5)
11 Various tools of Software Project Management Other sources (6)
12 Project Cost Management Chapter 7 (other sources 6-7)
13 Project Human Resource Management Chapter 9 (other sources 6-7)
14 Project Communications Management Chapter 10 (other sources 6-7)
15 Project Procurement Management Chapter 12 (other sources 6-7)
16 Final Examination Period Review of topics

Sources

Course Book 1. Software Project Management, Bob Hughes & Mike Cotterell, 3rd Ed., 2003, ISBN: 0707709834X McGraw-Hill Publication
Other Sources 2. Software Project Management in Practice, Pankaj Jalote, ISBN 0-201-73721-3 (Addison-Wesley) 2002
3. Effective Project Management, 2nd ed., R.Wysocki, R. Beck. Crane, ISBN: 9971-51-402-8, Wiley 2000
4. Project Management, Best Practices for IT Professionals, Richard Murch, ISBN 0-13-021914-2, Prentice-Hall 2000.
5. Quality Software Project Management, R.T.Futrell, D.F. Shafer, and L.Shafer, Prentice-Hall, 2002, ISBN: 0-13-0912972
6. Software Engineering: A practitioner’s approach, R.S.Pressman, Sixth edition, ISBN: 007-123840-9, McGraw Hill 2005
7. www.spmn.com/products_software.html;www.gantthead.com;www.ittoolkit.com
8. Information Technology Project Management, Kathy Schwalbe, ISBN: 13: 978-0-619-21528-3

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 5 5
Presentation - -
Project 1 20
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 40
Final Exam/Final Jury 1 40
Toplam 9 105
Percentage of Semester Work
Percentage of Final Work 100
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 An ability to apply advanced knowledge of computing and/or informatics to solve software engineering problems.
2 Develop solutions using different technologies, software architectures and life-cycle approaches.
3 An ability to design, implement and evaluate a software system, component, process or program by using modern techniques and engineering tools required for software engineering practices.
4 An ability to gather/acquire, analyze, interpret data and make decisions to understand software requirements.
5 Skills of effective oral and written communication and critical thinking about a wide range of issues arising in the context of working constructively on software projects.
6 An ability to access information in order to follow recent developments in science and technology and to perform scientific research or implement a project in the software engineering domain.
7 An understanding of professional, legal, ethical and social issues and responsibilities related to Software Engineering.
8 Skills in project and risk management, awareness about importance of entrepreneurship, innovation and long-term development, and recognition of international standards of excellence for software engineering practices standards and methodologies.
9 An understanding about the impact of Software Engineering solutions in a global, environmental, societal and legal context while making decisions.
10 Promote the development, adoption and sustained use of standards of excellence for software engineering practices.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 5 80
Presentation/Seminar Prepration
Project 1 10 10
Report
Homework Assignments 5 4 20
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 20 40
Prepration of Final Exams/Final Jury 1 30 30
Total Workload 228