Visual Programming (CMPE312) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Visual Programming CMPE312 Area Elective 2 2 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Elective Courses
Course Level Natural & Applied Sciences Master's Degree
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives The objective of the course is to cover visual programming skills needed for modern software development.
Course Learning Outcomes The students who succeeded in this course;
  • Demonstrate fundamental skills in utilizing the tools of a visual environment in terms of the set of available command menus and toolbars
  • Explain and use of delegates and events for producing event-driven application
  • Implement SDI and MDI applications while using forms, dialogs, and other types of GUI components
  • Produce and use specialized new GUI components
  • Explain message passing mechanism between components and threads using messaging
  • Apply visual programming to software development by designing projects with menus and submenus
  • Use visual programming environment to create simple visual applications
Course Content Review of object-oriented programming, visual programming basics such as value types, operator overloading, exception and event handling; using GUI frameworks; working with files and data access by using XML.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introducing Visual Programming fundamentals Part 1 (main text)
2 Introducing Visual Programming fundamentals Part 1
3 Review of OOP Part 2
4 Review of OOP (cont.) Part 2
5 Microsoft .NET Programming Basics Chapter 4,5,6
6 Exception Handling Chapter 11
7 Arrays and Collections Chapter 8
8 Arrays and Collections Chapter 8
9 Inheritance Chapter 11
10 Inheritance (cont.) Chapter 11
11 Polymorphism Chapter 12
12 Polymorphism (cont.) Chapter 12
13 Dialog Boxes and Controls Chapter 13
14 Dialog Boxes and Controls (cont.) Chapter 14
15 Graphical Outputs, Working with Files Chapter 15
16 Review

Sources

Course Book 1. Microsoft Visual C# 2008: An Introduction to Object Oriented Programming, Joyce Farrell, Third Edition, 2009, ISBN:1-4239-0255
Other Sources 2. 1. Microsoft Visual C# .NET (Step by Step) by John Sharp, Jon Jagger, Microsoft Press, 2002, ISBN : 0-7356-1289-7
3. 2. Ivor Horton's Beginning Visual C++ 2005, ISBN : 0-7645-7197-4
4. 3. Programming Windows®, Fifth Edition , Charles Petzold, ISB : 1-57231-995-X
5. 4. Microsoft Visual C++, .NET Deluxe Learning Edition, Microsoft Corporation, ISB : 0-7356-1908-5
6. 5. Visual Basic 2008 , How to Program by P.J.Deitel, H.M.Deitel, ISBN-13: 978-0-13-715536-1

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation 1 5
Laboratory 1 15
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation - -
Project 1 20
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 20
Final Exam/Final Jury 1 40
Toplam 5 100
Percentage of Semester Work 60
Percentage of Final Work 40
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Gains the ability to apply advanced computing and/or information knowledge in solving software engineering problems.
2 Develops solutions using different technologies, software architectures and life-cycle approaches. X
3 Gains the ability to design, implement, and evaluate a software system, component, process, or program using modern techniques and engineering tools for software engineering practices. X
4 Gains ability to gather/acquire, analyze, interpret data and make decisions to understand software requirements.
5 Gains skills of effective oral and written communication and critical thinking about a wide range of issues arising in the context of working constructively on software projects.
6 Gains the ability to access information to follow current developments in science and technology, conducts scientific research in the field of software engineering, and conducts a project.
7 Acquires an understanding of professional, legal, ethical and social issues and responsibilities related to Software Engineering.
8 Acquires project and risk management skills and gains awareness of the importance of entrepreneurship, innovation, and sustainable development, as well as international standards and methodologies.
9 Understands the impact of Software Engineering solutions in a global, environmental, societal and legal context while making decisions.
10 Gains awareness of the development, adoption, and ongoing support for the use of excellence standards in software engineering practices.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 4 64
Laboratory 1 5 5
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 1 16
Presentation/Seminar Prepration
Project 1 10 10
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 10 10
Prepration of Final Exams/Final Jury 1 15 15
Total Workload 120