Visual Programming (CMPE312) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Visual Programming CMPE312 2 2 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type N/A
Course Level Natural & Applied Sciences Master's Degree
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives The objective of the course is to cover visual programming skills needed for modern software development.
Course Learning Outcomes The students who succeeded in this course;
  • Demonstrate fundamental skills in utilizing the tools of a visual environment in terms of the set of available command menus and toolbars
  • Explain and use of delegates and events for producing event-driven application
  • Implement SDI and MDI applications while using forms, dialogs, and other types of GUI components
  • Produce and use specialized new GUI components
  • Explain message passing mechanism between components and threads using messaging
  • Apply visual programming to software development by designing projects with menus and submenus
  • Use visual programming environment to create simple visual applications
Course Content Review of object-oriented programming, visual programming basics such as value types, operator overloading, exception and event handling; using GUI frameworks; working with files and data access by using XML.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introducing Visual Programming fundamentals Part 1 (main text)
2 Introducing Visual Programming fundamentals Part 1
3 Review of OOP Part 2
4 Review of OOP (cont.) Part 2
5 Microsoft .NET Programming Basics Chapter 4,5,6
6 Exception Handling Chapter 11
7 Arrays and Collections Chapter 8
8 Arrays and Collections Chapter 8
9 Inheritance Chapter 11
10 Inheritance (cont.) Chapter 11
11 Polymorphism Chapter 12
12 Polymorphism (cont.) Chapter 12
13 Dialog Boxes and Controls Chapter 13
14 Dialog Boxes and Controls (cont.) Chapter 14
15 Graphical Outputs, Working with Files Chapter 15
16 Review

Sources

Course Book 1. Microsoft Visual C# 2008: An Introduction to Object Oriented Programming, Joyce Farrell, Third Edition, 2009, ISBN:1-4239-0255
Other Sources 2. 1. Microsoft Visual C# .NET (Step by Step) by John Sharp, Jon Jagger, Microsoft Press, 2002, ISBN : 0-7356-1289-7
3. 2. Ivor Horton's Beginning Visual C++ 2005, ISBN : 0-7645-7197-4
4. 3. Programming Windows®, Fifth Edition , Charles Petzold, ISB : 1-57231-995-X
5. 4. Microsoft Visual C++, .NET Deluxe Learning Edition, Microsoft Corporation, ISB : 0-7356-1908-5
6. 5. Visual Basic 2008 , How to Program by P.J.Deitel, H.M.Deitel, ISBN-13: 978-0-13-715536-1

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation 1 5
Laboratory 1 15
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments - -
Presentation - -
Project 1 20
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 20
Final Exam/Final Jury 1 40
Toplam 5 100
Percentage of Semester Work 60
Percentage of Final Work 40
Total 100

Course Category

Core Courses X
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 An ability to apply advanced knowledge of computing and/or informatics to solve software engineering problems.
2 Develop solutions using different technologies, software architectures and life-cycle approaches.
3 An ability to design, implement and evaluate a software system, component, process or program by using modern techniques and engineering tools required for software engineering practices.
4 An ability to gather/acquire, analyze, interpret data and make decisions to understand software requirements.
5 Skills of effective oral and written communication and critical thinking about a wide range of issues arising in the context of working constructively on software projects.
6 An ability to access information in order to follow recent developments in science and technology and to perform scientific research or implement a project in the software engineering domain.
7 An understanding of professional, legal, ethical and social issues and responsibilities related to Software Engineering.
8 Skills in project and risk management, awareness about importance of entrepreneurship, innovation and long-term development, and recognition of international standards of excellence for software engineering practices standards and methodologies.
9 An understanding about the impact of Software Engineering solutions in a global, environmental, societal and legal context while making decisions.
10 Promote the development, adoption and sustained use of standards of excellence for software engineering practices.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 4 64
Laboratory 1 5 5
Application
Special Course Internship
Field Work
Study Hours Out of Class 16 1 16
Presentation/Seminar Prepration
Project 1 10 10
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 1 10 10
Prepration of Final Exams/Final Jury 1 15 15
Total Workload 120