Tunnelling (CE522) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Tunnelling CE522 3 0 0 3 5
Pre-requisite Course(s)
None
Course Language English
Course Type N/A
Course Level Natural & Applied Sciences Master's Degree
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Problem Solving.
Course Coordinator
Course Lecturer(s)
  • Asst. Prof. Dr. Ebru AKIŞ
Course Assistants
Course Objectives To give students an understanding of principles and methods necessary to select tunneling excavation and support system.
Course Learning Outcomes The students who succeeded in this course;
  • Students will be able to obtain the knowledge of analysis, design and construction methods of tunnels in soft ground and rock.
  • Students will be able to use numerical analysis tools for the preliminary design of tunneling and underground structures construction.
  • Students will be able to interpret field and laboratory data by the use of classification methods used for tunneling methods.
  • Students will develop an ability to recognize and solve tunneling project problems.
Course Content Introduction to tunneling: art and engineering, geological aspects of tunneling, tunneling methods: soft ground, rock or adverse ground conditions, ground treatment in tunneling, stresses and displacements associated with excavation of tunnels, design and support of tunnels, application of numerical analysis codes for tunneling.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Introduction to tunneling
2 Geological aspects of tunneling
3 Tunneling methods: soft ground, rock or adverse ground conditions
4 Tunneling methods: soft ground, rock or adverse ground conditions
5 Tunneling methods: soft ground, rock or adverse ground conditions
6 Ground treatment in tunneling
7 Ground treatment in tunneling
8 Stresses and displacements associated with excavation of tunnels
9 Stresses and displacements associated with excavation of tunnels
10 Design and support of tunnels
11 Design and support of tunnels
12 Design and support of tunnels
13 Application of numerical analysis codes for tunneling
14 Application of numerical analysis codes for tunneling
15 Final exam period
16 Final exam period

Sources

Other Sources 1. Standard Handbook for Civil Engineers, F. S. Merritt, M.K. Loftin, J.T. Ricketts.
2. U.S. Army Corps of Engineers, Engineering and Design of Tunnel and Shafts, Manual No: 1110-2-2901.

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics 5 15
Homework Assignments 3 15
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 1 25
Final Exam/Final Jury 1 45
Toplam 10 100
Percentage of Semester Work 55
Percentage of Final Work 45
Total 100

Course Category

Core Courses
Major Area Courses X
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Attains knowledge through wide and in-depth investigations his/her field and surveys, evaluates, interprets, and applies the knowledge thus acquired. X
2 Has a critical and comprehensive knowledge of contemporary engineering techniques and methods of application. X
3 By using unfamiliar, ambiguous, or incompletely defined data, completes and utilizes the required knowledge by scientific methods; is able to fuse and make use of knowledge from different disciplines. X
4 Has the awareness of new and emerging technologies in his/her branch of engineering profession, studies and learns these when needed. X
5 Defines and formulates problems in his/her branch of engineering, develops methods of solution, and applies innovative methods of solution. X
6 Devises new and/or original ideas and methods; designs complex systems and processes and proposes innovative/alternative solutions for their design. X
7 Has the ability to design and conduct theoretical, experimental, and model-based investigations; is able to use judgment to solve complex problems that may be faced in this process. X
8 Functions effectively as a member or as a leader in teams that may be interdisciplinary, devises approaches of solving complex situations, can work independently and can assume responsibility. X
9 Has the oral and written communication skills in one foreign language at the B2 general level of European Language Portfolio. X
10 Can present the progress and the results of his investigations clearly and systematically in national or international contexts both orally and in writing. X
11 Knows social, environmental, health, safety, and legal dimensions of engineering applications as well as project management and business practices; and is aware of the limitations and the responsibilities these impose on engineering practices. X
12 Commits to social, scientific, and professional ethics during data acquisition, interpretation, and publication as well as in all professional activities.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours) 16 3 48
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 14 2 28
Presentation/Seminar Prepration
Project
Report
Homework Assignments 3 4 12
Quizzes/Studio Critics 5 2 10
Prepration of Midterm Exams/Midterm Jury 1 10 10
Prepration of Final Exams/Final Jury 1 17 17
Total Workload 125