ECTS - Probability and Statistics I

Probability and Statistics I (MATH291) Course Detail

Course Name Course Code Season Lecture Hours Application Hours Lab Hours Credit ECTS
Probability and Statistics I MATH291 3. Semester 3 0 0 3 5
Pre-requisite Course(s)
N/A
Course Language English
Course Type Service Courses Taken From Other Departments
Course Level Bachelor’s Degree (First Cycle)
Mode of Delivery Face To Face
Learning and Teaching Strategies Lecture, Question and Answer, Problem Solving.
Course Coordinator
Course Lecturer(s)
Course Assistants
Course Objectives In addition to some tools for classification, summarization and making sense of data, to provide students with basic probability knowledge and certain probability distributions
Course Learning Outcomes The students who succeeded in this course;
  • Upon completing of the course, students are expected to: 1- learn how to organize a set of data 2- be able to summarize the data by using the measures of central tendency and dispersion 3- calculate the probability with the assistance of basic concept of probability including some counting techniques, permutations and combinations 4- have the ability to use conditional probability, Bayesian approach and statistically independency within probability problems 5- be able to calculate the mean and standard deviation with expected value concept by understanding the difference between discrete and continuous random variables, 6- have the ability to use some probability distributions such as binomial and normal probability functions.
Course Content Basic definitions, tables and graphs, central tendency measures, central dispersion measures, probability concept, conditional probability, Bayesian approach, random variables, expected value, binomial and normal distributions.

Weekly Subjects and Releated Preparation Studies

Week Subjects Preparation
1 Basic Definitions, Frequency Distributions pp. 3-5
2 Relative, Cumulative, Cumulative Relative Frequency Distributions, Graphs, Stem and Leaf Display pp. 24-28
3 Central Tendency Measures; Mean, Median and Mode for Unclassified and Classified Data pp. 73-76
4 Central Dispersion Measures; Variance, Standard Deviation, Coefficient of Variation, Chebyshev Theorem pp. 93-100
5 Probability Concept, Random Event-Experiment, Sample Space, pp. 127-130
6 Classical / Postrerior Probability Definitions , Rule of Counting; Permutation and Combination, Multiplication Rule pp. 135-137
7 Midterm Exam
8 Venn Diagrams, Contingency Table, Conditional Probability pp. 138-140
9 Bayesian Approach, Statistical Indpendency pp. 142-145
10 Random Variables, Probability Function pp. 147-150
11 Expected Value and Its Properties, Mean and Standard Deviation pp. 155-157
12 Binomial Distribution pp. 167-168
13 Normal Distribution, Standard Normal Variable, Z table pp. 182-185
14 Problems on Normal Distribution and Vice-Verse Usage of Z table (Cut-off value ) pp. 199-205
15 Review
16 Final Exam

Sources

Course Book 1. D.H. Sanders, R. K. Simidt, Statistics, A First Course, 1990
Other Sources 2. D.H. Sanders, R. K. Simidt, Statistics, A First Course, 1990

Evaluation System

Requirements Number Percentage of Grade
Attendance/Participation - -
Laboratory - -
Application - -
Field Work - -
Special Course Internship - -
Quizzes/Studio Critics - -
Homework Assignments 2 10
Presentation - -
Project - -
Report - -
Seminar - -
Midterms Exams/Midterms Jury 2 50
Final Exam/Final Jury 1 40
Toplam 5 100
Percentage of Semester Work 60
Percentage of Final Work 40
Total 100

Course Category

Core Courses
Major Area Courses
Supportive Courses
Media and Managment Skills Courses
Transferable Skill Courses

The Relation Between Course Learning Competencies and Program Qualifications

# Program Qualifications / Competencies Level of Contribution
1 2 3 4 5
1 Obtains the ability to identify, define, formulate, and solve problems in the field of aviation management, and to select and apply appropriate analytical and modeling techniques for this purpose. X
2 Acquires sufficient knowledge in Business Administration, Management, and Aviation Management, and obtains the ability to apply both theoretical and practical knowledge from these fields to identify and solve problems encountered in air transportation management. X
3 Acquires the ability to design a complex system or process related to aviation management in such a way that it meets specific requirements under realistic constraints and conditions; and acquires the ability to apply modern design methods for this purpose. Realistic constraints and conditions include factors such as economic considerations, environmental issues, sustainability, manufacturability, ethics, health, safety, and social and political factors, depending on the nature of the design.
4 Acquires the ability to develop, select, and utilize modern techniques and tools required for applications in aviation management; and obtains the ability to effectively use information technologies.
5 Acquires the ability to design experiments, conduct experiments, collect data, and analyze and interpret results for the investigation of problems in aviation management. X
6 The ability to work effectively in the disciplinary and multi-disciplinary teams; individual study skills.
7 Gains the ability to communicate effectively in English, both orally and in writing; and possesses knowledge of at least one foreign language at a minimum of B1 General Level of the Common European Framework of Reference for Languages (CEFR), enabling them to follow developments in their field and share knowledge with others.
8 Develops an awareness of the necessity of lifelong learning; and gains the ability to access information, follow developments in science and technology, and continuously improve oneself.
9 Acquires knowledge about professional practices such as project management, risk management, and change management; and develops awareness of entrepreneurship, innovation, and sustainable development. X
10 Acquires knowledge about the universal and societal impacts of aviation management practices on health, environment, and safety, and develops awareness of the legal consequences of the practices to be implemented.
11 Becomes aware of the impact of management practices and workplace operations in aviation management businesses on employees' health, the environment, and occupational safety, and develops awareness of the legal consequences of practices in these areas. X
12 Acquires an awareness of professional and ethical responsibility.

ECTS/Workload Table

Activities Number Duration (Hours) Total Workload
Course Hours (Including Exam Week: 16 x Total Hours)
Laboratory
Application
Special Course Internship
Field Work
Study Hours Out of Class 14 3 42
Presentation/Seminar Prepration
Project
Report
Homework Assignments
Quizzes/Studio Critics
Prepration of Midterm Exams/Midterm Jury 2 10 20
Prepration of Final Exams/Final Jury 1 15 15
Total Workload 77