AKTS - Örüntü Tanıma
Örüntü Tanıma (EE448) Ders Detayları
| Ders Adı | Ders Kodu | Dönemi | Saati | Uygulama Saati | Laboratuar Hours | Kredi | AKTS |
|---|---|---|---|---|---|---|---|
| Örüntü Tanıma | EE448 | Alan Seçmeli | 3 | 0 | 0 | 3 | 5 |
| Ön Koşul Ders(ler)i |
|---|
| N/A |
| Dersin Dili | İngilizce |
|---|---|
| Dersin Türü | Seçmeli Dersler |
| Dersin Seviyesi | Lisans |
| Ders Verilme Şekli | Yüz Yüze |
| Dersin Öğrenme ve Öğretme Teknikleri | Anlatım, Tartışma, Uygulama-Alıştırma. |
| Dersin Öğretmen(ler)i |
|
| Dersin Amacı | 1. Örüntü tanımanın, Yapay Zeka alanındaki yeri hakkında bilgi vermek 2. Özellik oluşturma ve seçme, ses/ görüntü işleme, makine öğrenme yöntemleri (gözetimli ve gözetimsiz) konularında tanışıklık kazandırma 3. Seçilecek proje ile pratik yapma yeteneği |
| Dersin Eğitim Çıktıları |
Bu dersi başarıyla tamamlayabilen öğrenciler;
|
| Dersin İçeriği | Örüntü tanımaya giriş, Bayes karar verme teorisi, maksimum benzerlik kestirimi, doğrusal ve doğrusal olmayan sınıflandırma, perceptron, yapay sinir ağları, destek vektör makineleri, kümeleme, proje bazlı uygulamalar |
Haftalık Konular ve İlgili Ön Hazırlık Çalışmaları
| Hafta | Konular | Ön Hazırlık |
|---|---|---|
| 1 | Örüntü tanımaya giriş | Bu haftanın konularına ders kitabınızdan bakınız |
| 2 | Bayes karar kuramına dayalı sınıflandırıcılar | Geçen haftayı tekrar edin ve bu haftanın konusunu kitabınızdan okuyun |
| 3 | Bayes karar kuramına dayalı sınıflandırıcılar | Geçen haftayı tekrar edin ve bu haftanın konusuna çalışın |
| 4 | Doğrusal sınıflandırıcılar | Geçen haftayı tekrar edin ve bu haftanın konusunu okuyun |
| 5 | Doğrusal olmayan sınıflandırıcılar | Geçen haftayı tekrar edin ve bu haftanın konusunu okuyun |
| 6 | Doğrusal olmayan sınıflandırıcılar | Geçen haftayı tekrar edin ve bu haftanın konusunu okuyun |
| 7 | Sınıflandırıcı kombinasyonu | Geçen haftayı tekrar edin ve bu haftanın konusunu okuyun |
| 8 | Öznitelik seçimi | Geçen haftayı tekrar edin ve bu haftanın konusunu okuyun |
| 9 | Öznitelik oluşturma | Geçen haftayı tekrar edin ve bu haftanın konusunu okuyun |
| 10 | Öznitelik oluşturma | Geçen haftayı tekrar edin ve bu haftanın konusunu okuyun |
| 11 | Kümeleme algoritmaları, çok boyutlu ölçekleme | Geçen haftayı tekrar edin ve bu haftanın konusunu okuyun |
| 12 | Kümeleme algoritmaları, çok boyutlu ölçekleme | Geçen haftayı tekrar edin ve bu haftanın konusunu okuyun |
| 13 | Uygulamalar: İmge ve konuşma işleme | Geçen haftayı tekrar edin ve bu haftanın konusunu okuyun |
| 14 | Uygulamalar: İmge ve konuşma işleme | Geçen haftayı tekrar edin ve bu haftanın konusunu okuyun |
Kaynaklar
| Ders Kitabı | 1. Pattern Recognition, S.Theodoridis and K.Koutroumbas,4th Ed., Academic Press, 2009. |
|---|---|
| Diğer Kaynaklar | 2. Pattern Classification, R.O.Duda, P.E.Hart and D.G.Stork, John Wiley, 2001. |
| 3. Pattern Recognition and Machine Learning, C.M.Bishop, Springer, 2006. | |
| 4. Introduction to Pattern Recognition A Matlab Approach, S.Theodoridis, A.Pikrakis, K.Koutroumbas, D.Cavouras, Academic Press, 2010. |
Değerlendirme System
| Çalışmalar | Sayı | Katkı Payı |
|---|---|---|
| Devam/Katılım | - | - |
| Laboratuar | - | - |
| Uygulama | - | - |
| Alan Çalışması | - | - |
| Derse Özgü Staj | - | - |
| Küçük Sınavlar/Stüdyo Kritiği | - | - |
| Ödevler | 3 | 15 |
| Sunum | - | - |
| Projeler | 1 | 20 |
| Rapor | - | - |
| Seminer | - | - |
| Ara Sınavlar/Ara Juri | 1 | 25 |
| Genel Sınav/Final Juri | - | - |
| Toplam | 5 | 60 |
| Yarıyıl İçi Çalışmalarının Başarı Notu Katkısı | 55 |
|---|---|
| Yarıyıl Sonu Çalışmalarının Başarı Notuna Katkısı | 45 |
| Toplam | 100 |
Kurs Kategorisi
| Temel Meslek Dersleri | X |
|---|---|
| Uzmanlık/Alan Dersleri | |
| Destek Dersleri | |
| İletişim ve Yönetim Becerileri Dersleri | |
| Aktarılabilir Beceri Dersleri |
Dersin Öğrenim Çıktılarının Program Yeterlilikleri ile İlişkisi
| # | Program Yeterlilikleri / Çıktıları | Katkı Düzeyi | ||||
|---|---|---|---|---|---|---|
| 1 | 2 | 3 | 4 | 5 | ||
| 1 | Matematik, fen bilimleri, temel mühendislik, bilgisayarla hesaplama ve ilgili mühendislik disiplinine özgü konularda bilgi; bu bilgileri, karmaşık mühendislik problemlerinin çözümünde kullanabilme becerisi. | |||||
| 2 | Karmaşık mühendislik problemlerini, temel bilim, matematik ve mühendislik bilgilerini kullanarak ve ele alınan problemle ilgili BM Sürdürülebilir Kalkınma Amaçlarını gözeterek tanımlama, formüle etme ve analiz becerisi. | |||||
| 3 | Karmaşık mühendislik problemlerine yaratıcı çözümler tasarlama becerisi; karmaşık sistemleri, süreçleri, cihazları veya ürünleri gerçekçi kısıtları ve koşulları gözeterek, mevcut ve gelecekteki gereksinimleri karşılayacak biçimde tasarlama becerisi. | |||||
| 4 | Karmaşık mühendislik problemlerinin analizi ve çözümüne yönelik, tahmin ve modelleme de dahil olmak üzere, uygun teknikleri, kaynakları ve modern mühendislik ve bilişim araçlarını, sınırlamalarının da farkında olarak seçme ve kullanma becerisi. | |||||
| 5 | Karmaşık mühendislik problemlerinin incelenmesi için literatür araştırması, deney tasarlama, deney yapma, veri toplama, sonuçları analiz etme ve yorumlama dahil, araştırma yöntemlerini kullanma becerisi. | |||||
| 6 | Mühendislik uygulamalarının BM Sürdürülebilir Kalkınma Amaçları kapsamında, topluma, sağlık ve güvenliğe, ekonomiye, sürdürülebilirlik ve çevreye etkileri hakkında bilgi; mühendislik çözümlerinin hukuksal sonuçları konusunda farkındalık. | |||||
| 7 | Mühendislik meslek ilkelerine uygun davranma, etik sorumluluk hakkında bilgi; hiçbir konuda ayrımcılık yapmadan, tarafsız davranma ve çeşitliliği kapsayıcı olma konularında farkındalık. | |||||
| 8 | Bireysel olarak ve disiplin içi ve çok disiplinli takımlarda (yüz yüze, uzaktan veya karma) takım üyesi veya lideri olarak etkin biçimde çalışabilme becerisi. | |||||
| 9 | Hedef kitlenin çeşitli farklılıklarını (eğitim, dil, meslek gibi) dikkate alarak, teknik konularda sözlü, yazılı etkin iletişim kurma becerisi. | |||||
| 10 | Proje yönetimi ve ekonomik yapılabilirlik analizi gibi iş hayatındaki uygulamalar hakkında bilgi; girişimcilik ve yenilikçilik hakkında farkındalık. | |||||
| 11 | Bağımsız ve sürekli öğrenebilme, yeni ve gelişmekte olan teknolojilere uyum sağlayabilme ve teknolojik değişimlerle ilgili sorgulayıcı düşünebilmeyi kapsayan yaşam boyu öğrenme becerisi. | |||||
ECTS/İş Yükü Tablosu
| Aktiviteler | Sayı | Süresi (Saat) | Toplam İş Yükü |
|---|---|---|---|
| Teorik Ders saati (Sınav haftası dahildir: 16 x teorik ders saati) | 16 | 3 | 48 |
| Laboratuar | |||
| Uygulama | 4 | 4 | 16 |
| Derse Özgü Staj | |||
| Alan Çalışması | |||
| Sınıf Dışı Ders Çalışma Süresi | 14 | 3 | 42 |
| Sunum/Seminer Hazırlama | 1 | 4 | 4 |
| Projeler | |||
| Raporlar | |||
| Ödevler | |||
| Küçük Sınavlar/Stüdyo Kritiği | |||
| Ara Sınavlara/Ara Juriye Hazırlanma Süresi | 2 | 2 | 4 |
| Genel Sınava/Genel Juriye Hazırlanma Süresi | 1 | 3 | 3 |
| Toplam İş Yükü | 117 | ||
