AKTS - Örüntü Tanıma
Örüntü Tanıma (CMPE467) Ders Detayları
Ders Adı | Ders Kodu | Dönemi | Saati | Uygulama Saati | Laboratuar Hours | Kredi | AKTS |
---|---|---|---|---|---|---|---|
Örüntü Tanıma | CMPE467 | Alan Seçmeli | 3 | 0 | 0 | 3 | 5 |
Ön Koşul Ders(ler)i |
---|
N/A |
Dersin Dili | İngilizce |
---|---|
Dersin Türü | Teknik Seçmeli Dersler |
Dersin Seviyesi | Lisans |
Ders Verilme Şekli | Yüz Yüze |
Dersin Öğrenme ve Öğretme Teknikleri | Anlatım. |
Dersin Öğretmen(ler)i |
|
Dersin Amacı | Bu dersin amacı öğrencinin Bayes karar teorisi, doğrusal ayırtaçlar, karar ağaçları, en yakın komşu kümelemesi, yapay sinir ağları gibi temel örüntü tanıma yaklaşımlarına aşina olmasını sağlamaktır. |
Dersin Eğitim Çıktıları |
Bu dersi başarıyla tamamlayabilen öğrenciler;
|
Dersin İçeriği | Bayes karar teorisi, sınıflandırıcılar, doğrusal ayırtaçlar ve karar verme yüzeyleri, parametre kestirimi, saklı Markov modelleri, en yakın komşu kümelemesi, doğrusal ayırtaçlar, yapay sinir ağları, karar ağaçları, sıradüzensel kümeleme, öz düzenleyici özellik haritaları. |
Haftalık Konular ve İlgili Ön Hazırlık Çalışmaları
Hafta | Konular | Ön Hazırlık |
---|---|---|
1 | Temel bilgiler | Bölüm 1 (ana kaynak) |
2 | Bayes karar teorisi | Bölüm 2 |
3 | Bayes karar teorisi | Bölüm 2 |
4 | Bayes karar teorisi | Bölüm 2 |
5 | En büyük olabilirlik ve Bayes parametre kestirimi | Bölüm 3 |
6 | En büyük olabilirlik ve Bayes parametre kestirimi | Bölüm 3 |
7 | Parametrik olmayan teknikler | Bölüm 4 |
8 | Parametrik olmayan teknikler | Bölüm 4 |
9 | Doğrusal ayırtaçlar | Bölüm 5 |
10 | Doğrusal ayırtaçlar | Bölüm 5 |
11 | Çok katmanlı yapay sinir ağları | Bölüm 6 |
12 | Metrik olmayan yöntemler | Bölüm 8 |
13 | Güdümsüz öğrenme ve kümeleme | Bölüm 10 |
14 | Güdümsüz öğrenme ve kümeleme | Bölüm 10 |
Kaynaklar
Ders Kitabı | 1. R.O. Duda, P.E. Hart, and D.G. Stork, Pattern Classification, New York: John Wiley, 2001, |
---|---|
Diğer Kaynaklar | 2. 1. R. Schalkoff, Pattern Recognition: Statistical, Structural and Neural Approaches, Wiley, 1991. |
3. 2. S.Theodoridis, K. Koutroumbas, Pattern Recognition, Elsevier, 2003. | |
4. 3. L. I. Kuncheva, Combining Pattern Classifiers: Methods and Algorithms, Wiley, 2004. |
Değerlendirme System
Çalışmalar | Sayı | Katkı Payı |
---|---|---|
Devam/Katılım | 1 | 5 |
Laboratuar | - | - |
Uygulama | - | - |
Alan Çalışması | - | - |
Derse Özgü Staj | - | - |
Küçük Sınavlar/Stüdyo Kritiği | - | - |
Ödevler | 3 | 30 |
Sunum | - | - |
Projeler | - | - |
Rapor | - | - |
Seminer | - | - |
Ara Sınavlar/Ara Juri | 2 | 40 |
Genel Sınav/Final Juri | 1 | 30 |
Toplam | 7 | 105 |
Yarıyıl İçi Çalışmalarının Başarı Notu Katkısı | 70 |
---|---|
Yarıyıl Sonu Çalışmalarının Başarı Notuna Katkısı | 30 |
Toplam | 100 |
Kurs Kategorisi
Temel Meslek Dersleri | |
---|---|
Uzmanlık/Alan Dersleri | |
Destek Dersleri | X |
İletişim ve Yönetim Becerileri Dersleri | |
Aktarılabilir Beceri Dersleri |
Dersin Öğrenim Çıktılarının Program Yeterlilikleri ile İlişkisi
# | Program Yeterlilikleri / Çıktıları | Katkı Düzeyi | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Matematik, fen bilimleri ve yazılım mühendisliği disiplinine özgü konularda yeterli bilgi birikimi; bu alanlardaki kuramsal ve uygulamalı bilgileri, karmaşık mühendislik problemlerinde kullanabilme becerisini kazanır. | X | ||||
2 | Karmaşık mühendislik problemlerini tanımlama, formüle etme ve çözme becerisi; bu amaçla uygun analiz ve modelleme yöntemlerini seçme ve uygulama becerisini edinir. | X | ||||
3 | Karmaşık bir sistemi, süreci, cihazı veya ürünü gerçekçi kısıtlar ve koşullar altında, belirli gereksinimleri karşılayacak şekilde tasarlama becerisi; bu amaçla modern tasarım yöntemlerini uygulama becerisini kazanır. | X | ||||
4 | Yazılım mühendisliği uygulamalarında karşılaşılan karmaşık problemlerin analizi ve çözümü için gerekli olan modern teknik ve araçları seçme ve kullanma becerisi; bilişim teknolojilerini etkin bir şekilde kullanma becerisini gösterir. | X | ||||
5 | Karmaşık mühendislik problemlerinin veya yazılım mühendisliği disiplinine özgü araştırma konularının incelenmesi için, deney tasarlama, deney yapma, veri toplama, sonuçları analiz etme ve yorumlama becerisini geliştirir. | |||||
6 | Yazlım mühendisliği ile ilgili alanlarda disiplin içi ve çok disiplinli takımlarda etkin biçimde çalışabilme becerisi; bireysel çalışma becerisi gösterir. | |||||
7 | Türkçe sözlü ve yazılı etkin iletişim kurma becerisi; etkin rapor yazma ve yazılı raporları anlama, tasarım ve üretim raporları hazırlayabilme, etkin sunum yapabilme, açık ve anlaşılır talimat verme ve alma becerisi gösterir. | |||||
8 | En az bir yabancı dil bilgisi alır; etkin rapor yazma ve yazılı raporları anlama, tasarım ve üretim raporları hazırlayabilme, etkin sunum yapabilme, açık ve anlaşılır talimat verme ve alma becerisi kazanır. | |||||
9 | Yaşam boyu öğrenmenin gerekliliği knousnda farkındalık; bilgiye erişebilme, bilim ve teknolojideki gelişmeleri izleme ve kendini sürekli yenileme becerisini edinir. | |||||
10 | Etik ilkelerine uygun davranma, mesleki ve etik sorumluluk hakkında bilgi sahip olur. | |||||
11 | Yazılım mühendisliği uygulamalarında kullanılan standartlar hakkında bilgi sahibi olur. | |||||
12 | Proje yönetimi, risk yönetimi ve değişiklik yönetimi gibi, iş hayatı uygulamaları hakkında bilgi sahibi olur. | |||||
13 | Girişimcilik ve yenilikçilik hakkında farkındalık kazanır. | |||||
14 | Sürdürülebilir kalkınma hakkında bilgi sahibi olur. | |||||
15 | Yazılım mühendisliği uygulamalarının evrensel ve toplumsal boyutlarda sağlık, çevre ve güvenlik üzerindeki etkileri ve çağın mühendislik alanına yansıyan sorunları hakkında bilgi sahibi olur. | |||||
16 | Mühendislik çözümlerinin hukuksal sonuçları konusunda farkındalık kazanır. | |||||
17 | Yazılım alternatiflerini irdeleyerek bilgisayar tabanlı sistemlerin modellenmesi ve tasarımında, algoritma prensiplerini, matematiksel temelleri ve bilgisayar bilimleri teorisini uygulama becerisini uygular. | X | ||||
18 | Yazılım sistemlerinin analiz, tasarım, uygulama, doğrulama, geçerleme ve bakım süreçlerini uygulayarak geliştirilmesinde mühendislik yaklaşımlarını uygulama becerisi kazanır. |
ECTS/İş Yükü Tablosu
Aktiviteler | Sayı | Süresi (Saat) | Toplam İş Yükü |
---|---|---|---|
Ders saati (Sınav haftası dahildir: 16 x toplam ders saati) | 16 | 3 | 48 |
Laboratuar | |||
Uygulama | |||
Derse Özgü Staj | |||
Alan Çalışması | |||
Sınıf Dışı Ders Çalışma Süresi | 16 | 2 | 32 |
Sunum/Seminer Hazırlama | |||
Projeler | |||
Raporlar | |||
Ödevler | 3 | 4 | 12 |
Küçük Sınavlar/Stüdyo Kritiği | |||
Ara Sınavlara/Ara Juriye Hazırlanma Süresi | 2 | 10 | 20 |
Genel Sınava/Genel Juriye Hazırlanma Süresi | 1 | 15 | 15 |
Toplam İş Yükü | 127 |