AKTSBiyoenformatik

Biyoenformatik (SE446) Ders Detayları

Ders Adı Ders Kodu Dönemi Saati Uygulama Saati Laboratuar Hours Kredi AKTS
Biyoenformatik SE446 Seçmeli Dersler 3 0 0 3 5
Ön Koşul Ders(ler)i
N/A
Dersin Dili İngilizce
Dersin Türü Teknik Seçmeli Dersler
Dersin Seviyesi Lisans
Ders Verilme Şekli Yüz Yüze
Dersin Öğrenme ve Öğretme Teknikleri Anlatım.
Dersin Koordinatörü
Dersin Öğretmen(ler)i
Course Assistants
Dersin Amacı Bu dersin amacı, büyük miktardaki biyolojik verilerin analizi için gereken hesaplamalı teknikler ile ilgili bilgi ve becerilerin kazandırılmasıdır. Bu derste bioenformatikteki hesaplamalı tekniklerin uygulamaları tanıtılacaktır.
Dersin Eğitim Çıktıları Bu dersi başarıyla tamamlayabilen öğrenciler;
  • DNA ve protein dizilerini hizalama tekniklerini uygulama
  • Filogenetik ağaçları oluşturma
  • Protein yapılarını kestirme tekniklerini uygulama
  • Bioenformatikte kullanılan kümeleme yöntemleri ile ilgili beceriler kazanma
  • Gen/protein ağlarını analiz etme
Dersin İçeriği DNA ve protein dizilerini hizalama, filogenetik ağaçları, protein yapılarını kestirme, motif bulma, DNA mikroçip veri analizi, gen/protein ağları.

Haftalık Konular ve İlgili Ön Hazırlık Çalışmaları

Hafta Konular Ön Hazırlık
1 Temel bilgiler Bölüm 1,2,3 (ana kaynak)
2 Dizi hizalama ve analizi Bölüm 4
3 İkişerli dizi hizalama ve veritabanı arama Bölüm 5
4 İkişerli dizi hizalama ve veritabanı arama Bölüm 5
5 Örüntüler, profiller ve çoklu dizi hizalama Bölüm 6
6 Örüntüler, profiller ve çoklu dizi hizalama Bölüm 6
7 Evrimsel geçmişi elde etme Bölüm 7
8 Filogenetik ağaç oluşturma Bölüm 8
9 Diziden ikincil yapıyı elde etme Bölüm 11
10 İkincil yapıyı kestirme Bölüm 12
11 Protein yapılarını modelleme Bölüm 13
12 Kümeleme yöntemleri ve istatistik Bölüm 16
13 Kümeleme yöntemleri ve istatistik Bölüm 16
14 Sistem biyolojisi Bölüm 17
15 Dönem Sonu Sınav çalışmaları Dönem için konuların tekrarı
16 Dönem Sonu Sınav çalışmaları Dönem için konuların tekrarı

Kaynaklar

Ders Kitabı 1. M. Zvelebil and J. O. Baum, Understanding Bioinformatics, Garland Science, 2008
Diğer Kaynaklar 2. N. C. Jones and P. A. Pevzner, An Introduction to Bioinformatics Algorithms, MIT press, 2004
3. A. M. Lesk, Introduction to Bioinformatics, Oxford University Press, 2002
4. D. Mount, Bioinformatics: Sequence and genome analysis, Cold Spring Harbor Laboratory Press, 2001
5. T. Jiang, Y. Xu, and M. Zhang, eds. Current Topics in Computational Molecular Biology, MIT press, 2002

Değerlendirme System

Çalışmalar Sayı Katkı Payı
Devam/Katılım - -
Laboratuar - -
Uygulama - -
Alan Çalışması - -
Derse Özgü Staj - -
Küçük Sınavlar/Stüdyo Kritiği - -
Ödevler 1 20
Sunum - -
Projeler 1 30
Rapor - -
Seminer - -
Ara Sınavlar/Ara Juri 1 20
Genel Sınav/Final Juri 1 30
Toplam 4 100
Yarıyıl İçi Çalışmalarının Başarı Notu Katkısı 70
Yarıyıl Sonu Çalışmalarının Başarı Notuna Katkısı 30
Toplam 100

Kurs Kategorisi

Temel Meslek Dersleri
Uzmanlık/Alan Dersleri X
Destek Dersleri
İletişim ve Yönetim Becerileri Dersleri
Aktarılabilir Beceri Dersleri

Dersin Öğrenim Çıktılarının Program Yeterlilikleri ile İlişkisi

# Program Yeterlilikleri / Çıktıları Katkı Düzeyi
1 2 3 4 5
1 Matematik, fen bilimleri ve yazılım mühendisliği disiplinine özgü konularda yeterli bilgi birikimi; bu alanlardaki kuramsal ve uygulamalı bilgileri, karmaşık mühendislik problemlerinde kullanabilme becerisi. X
2 Karmaşık mühendislik problemlerini saptama, tanımlama, formüle etme ve çözme becerisi; bu amaçla uygun analiz ve modelleme yöntemlerini seçme ve uygulama becerisi X
3 Karmaşık bir sistemi, süreci, cihazı veya ürünü gerçekçi kısıtlar ve koşullar altında, belirli gereksinimleri karşılayacak şekilde tasarlama becerisi; bu amaçla modern tasarım yöntemlerini uygulama becerisi. X
4 Yazılım mühendisliği uygulamalarında karşılaşılan karmaşık problemlerin analizi ve çözümü için gerekli olan modern teknik ve araçları geliştirme, seçme ve kullanma becerisi; bilişim teknolojilerini etkin bir şekilde kullanma becerisi. X
5 Karmaşık mühendislik problemlerinin veya yazılım mühendisliği disiplinine özgü araştırma konularının incelenmesi için, veri toplama, sonuçları analiz etme ve yorumlama becerisi. X
6 Disiplin içi ve çok disiplinli takımlarda etkin biçimde çalışabilme becerisi; bireysel çalışma becerisi. X
7 Türkçe sözlü ve yazılı etkin iletişim kurma becerisi; en az bir yabancı dil bilgisi; etkin rapor yazma ve yazılı raporları anlama, tasarım ve üretim raporları hazırlayabilme, etkin sunum yapabilme, açık ve anlaşılır talimat verme ve alma becerisi. X
8 Yaşam boyu öğrenmenin gerekliliği bilinci; bilgiye erişebilme, bilim ve teknolojideki gelişmeleri izleme ve kendini sürekli yenileme becerisi. X
9 Etik ilkelerine uygun davranma, mesleki ve etik sorumluluk bilinci; yazılım mühendisliği uygulamalarında kullanılan standartlar hakkında bilgi. X
10 Proje yönetimi, risk yönetimi ve değişiklik yönetimi gibi, iş hayatındaki uygulamalar hakkında bilgi; girişimcilik, yenilikçilik hakkında farkındalık; sürdürülebilir kalkınma hakkında bilgi. X
11 Yazılım mühendisliği uygulamalarının evrensel ve toplumsal boyutlarda sağlık, çevre ve güvenlik üzerindeki etkileri ve çağın mühendislik alanına yansıyan sorunları hakkında bilgi; mühendislik çözümlerinin hukuksal sonuçları konusunda farkındalık. X
12 Yazılım alternatiflerini irdeleyerek bilgisayar tabanlı sistemlerin modellenmesi ve tasarımında, algoritma prensiplerini, matematiksel temelleri ve bilgisayar bilimleri teorisini uygulama becerisi. X
13 Yazılım sistemlerinin analiz, tasarım, uygulama, doğrulama, geçerleme ve bakım süreçlerini uygulayarak geliştirilmesinde mühendislik yaklaşımlarını uygulama becerisi. X

ECTS/İş Yükü Tablosu

Aktiviteler Sayı Süresi (Saat) Toplam İş Yükü
Ders saati (Sınav haftası dahildir: 16 x toplam ders saati) 16 3 48
Laboratuar
Uygulama
Derse Özgü Staj
Alan Çalışması
Sınıf Dışı Ders Çalışma Süresi 16 2 32
Sunum/Seminer Hazırlama
Projeler
Raporlar
Ödevler 3 5 15
Küçük Sınavlar/Stüdyo Kritiği
Ara Sınavlara/Ara Juriye Hazırlanma Süresi 2 10 20
Genel Sınava/Genel Juriye Hazırlanma Süresi 1 15 15
Toplam İş Yükü 130