AKTSVeri Ambarı ve Veri Madenciliği

Veri Ambarı ve Veri Madenciliği (ISE314) Ders Detayları

Ders Adı Ders Kodu Dönemi Saati Uygulama Saati Laboratuar Hours Kredi AKTS
Veri Ambarı ve Veri Madenciliği ISE314 Seçmeli Dersler 3 0 0 3 5
Ön Koşul Ders(ler)i
CMPE341
Dersin Dili İngilizce
Dersin Türü Teknik Seçmeli Dersler
Dersin Seviyesi Lisans
Ders Verilme Şekli Yüz Yüze
Dersin Öğrenme ve Öğretme Teknikleri Anlatım.
Dersin Koordinatörü
Dersin Öğretmen(ler)i
Course Assistants
Dersin Amacı The objectives of this course are to introduce and describe data warehousing steps and methods for accessing and analyzing warehouse data; and to introduce the basic concepts and rule mining techniques and develop skills of using recent data mining software for solving practical problems.
Dersin Eğitim Çıktıları Bu dersi başarıyla tamamlayabilen öğrenciler;
  • İlişkisel veri tabanlarındaki veriden etkin olarak yararlanma
  • Veri ambarındaki veriden, temiz ve tutarlı bir veri deposu yaratmak
  • Yönetim karar desteği için farklı düzeylerde ve türlerde özet veri yaratmak
  • Yapay sinir ağları, kural madenciliği ve karar ağaçları gibi teknikleri kullanarak, veri içinde gizli bilgi ve desenleri ortaya çıkartmak.
Dersin İçeriği Veri ambarları temelleri. Veri ambarı planlaması, tasarımı, gerçekleştirmesi ve yönetimi. Veri küpleri ile hesaplama. OLAP sorgu işleme. Veri madenciliği temelleri ve veri ambarları ve OLAP ile olan ilişkisi. Birliktelik kural madenciliği. Öbekleme, sınıflandırma ve kural öğrenme madenciliği.

Haftalık Konular ve İlgili Ön Hazırlık Çalışmaları

Hafta Konular Ön Hazırlık
1 Veri ambarlarına giriş Bölüm 1,2 (Ders kitabı 1)
2 Çok boyutlu veri modelleme Bölüm 2 (Ders kitabı 2 2)
3 Veri ambarı kurma 1 Bölüm 6 (Ders kitabı 1)
4 Veri ambarı kurma 2 Bölüm 6 (Ders kitabı 1)
5 Veri ambarı kurma 3 Bölüm 6 (Ders kitabı 1)
6 Veri madenciliği ve veri görselleştirme 1 Bölüm 3 (Ders kitabı 1)
7 Veri madenciliği ve veri görselleştirme 2 Bölüm 3 (Ders kitabı 1)
8 Veri madenciliği teknikleri: Öbekleme 1 Bölüm 5 (Diğer kaynaklar 3)
9 Veri madenciliği teknikleri: Karar ağaçları 3 Bölüm 5 (Diğer kaynaklar 3)
10 Veri ambarı ve veri madenciliği uygulamaları 1 Yazılım üzerinde uygulamalar
11 Veri ambarı ve veri madenciliği uygulamaları 2 Yazılım üzerinde uygulamalar
12 Veri ambarı ve veri madenciliği uygulamaları 3 Yazılım üzerinde uygulamalar
13 Veri ambarı ve veri madenciliği uygulamaları 4 Yazılım üzerinde uygulamalar
14 Veri ambarı ve veri madenciliği uygulamaları 5 Yazılım üzerinde uygulamalar
15 Dönem Sonu Sınav çalışmaları Dönem içi konuların tekrarı
16 Dönem Sonu Sınav çalışmaları Dönem içi konuların tekrarı

Kaynaklar

Ders Kitabı 1. George M. Marakas, “Modern Data Warehousing, Mining, and Visualization: Core Concepts”, Prentice Hall, 2003.
2. R. Kimball and M. Ross, “The Data Warehouse Toolkit” , 2002, Wiley
Diğer Kaynaklar 3. Han J.W., Kamber M. Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers, 2006.
4. Tan P.N., Steinbach M., Kumar V. Introduction to Data Mining. Addison Wesley, 2005.
5. Berry, M., J., A., & Linoff, G., S., (2000). Mastering data mining. New York: Wiley.

Değerlendirme System

Çalışmalar Sayı Katkı Payı
Devam/Katılım - -
Laboratuar - -
Uygulama - -
Alan Çalışması - -
Derse Özgü Staj - -
Küçük Sınavlar/Stüdyo Kritiği - -
Ödevler - -
Sunum - -
Projeler 1 30
Rapor - -
Seminer - -
Ara Sınavlar/Ara Juri 1 30
Genel Sınav/Final Juri 1 40
Toplam 3 100
Yarıyıl İçi Çalışmalarının Başarı Notu Katkısı 60
Yarıyıl Sonu Çalışmalarının Başarı Notuna Katkısı 40
Toplam 100

Kurs Kategorisi

Temel Meslek Dersleri
Uzmanlık/Alan Dersleri X
Destek Dersleri
İletişim ve Yönetim Becerileri Dersleri
Aktarılabilir Beceri Dersleri

Dersin Öğrenim Çıktılarının Program Yeterlilikleri ile İlişkisi

# Program Yeterlilikleri / Çıktıları Katkı Düzeyi
1 2 3 4 5
1 Matematik, fen bilimleri ve yazılım mühendisliği disiplinine özgü konularda yeterli bilgi birikimi; bu alanlardaki kuramsal ve uygulamalı bilgileri, karmaşık mühendislik problemlerinde kullanabilme becerisi.
2 Karmaşık mühendislik problemlerini saptama, tanımlama, formüle etme ve çözme becerisi; bu amaçla uygun analiz ve modelleme yöntemlerini seçme ve uygulama becerisi X
3 Karmaşık bir sistemi, süreci, cihazı veya ürünü gerçekçi kısıtlar ve koşullar altında, belirli gereksinimleri karşılayacak şekilde tasarlama becerisi; bu amaçla modern tasarım yöntemlerini uygulama becerisi. X
4 Yazılım mühendisliği uygulamalarında karşılaşılan karmaşık problemlerin analizi ve çözümü için gerekli olan modern teknik ve araçları geliştirme, seçme ve kullanma becerisi; bilişim teknolojilerini etkin bir şekilde kullanma becerisi. X
5 Karmaşık mühendislik problemlerinin veya yazılım mühendisliği disiplinine özgü araştırma konularının incelenmesi için, veri toplama, sonuçları analiz etme ve yorumlama becerisi. X
6 Disiplin içi ve çok disiplinli takımlarda etkin biçimde çalışabilme becerisi; bireysel çalışma becerisi.
7 Türkçe sözlü ve yazılı etkin iletişim kurma becerisi; en az bir yabancı dil bilgisi; etkin rapor yazma ve yazılı raporları anlama, tasarım ve üretim raporları hazırlayabilme, etkin sunum yapabilme, açık ve anlaşılır talimat verme ve alma becerisi.
8 Yaşam boyu öğrenmenin gerekliliği bilinci; bilgiye erişebilme, bilim ve teknolojideki gelişmeleri izleme ve kendini sürekli yenileme becerisi.
9 Etik ilkelerine uygun davranma, mesleki ve etik sorumluluk bilinci; yazılım mühendisliği uygulamalarında kullanılan standartlar hakkında bilgi.
10 Proje yönetimi, risk yönetimi ve değişiklik yönetimi gibi, iş hayatındaki uygulamalar hakkında bilgi; girişimcilik, yenilikçilik hakkında farkındalık; sürdürülebilir kalkınma hakkında bilgi. X
11 Yazılım mühendisliği uygulamalarının evrensel ve toplumsal boyutlarda sağlık, çevre ve güvenlik üzerindeki etkileri ve çağın mühendislik alanına yansıyan sorunları hakkında bilgi; mühendislik çözümlerinin hukuksal sonuçları konusunda farkındalık.
12 Yazılım alternatiflerini irdeleyerek bilgisayar tabanlı sistemlerin modellenmesi ve tasarımında, algoritma prensiplerini, matematiksel temelleri ve bilgisayar bilimleri teorisini uygulama becerisi. X
13 Yazılım sistemlerinin analiz, tasarım, uygulama, doğrulama, geçerleme ve bakım süreçlerini uygulayarak geliştirilmesinde mühendislik yaklaşımlarını uygulama becerisi.

ECTS/İş Yükü Tablosu

Aktiviteler Sayı Süresi (Saat) Toplam İş Yükü
Ders saati (Sınav haftası dahildir: 16 x toplam ders saati)
Laboratuar
Uygulama
Derse Özgü Staj
Alan Çalışması
Sınıf Dışı Ders Çalışma Süresi 16 5 80
Sunum/Seminer Hazırlama
Projeler 1 20 20
Raporlar
Ödevler
Küçük Sınavlar/Stüdyo Kritiği
Ara Sınavlara/Ara Juriye Hazırlanma Süresi 1 15 15
Genel Sınava/Genel Juriye Hazırlanma Süresi 1 20 20
Toplam İş Yükü 135