AKTS - Fonksiyonel Analiz
Fonksiyonel Analiz (MATH357) Ders Detayları
| Ders Adı | Ders Kodu | Dönemi | Saati | Uygulama Saati | Laboratuar Hours | Kredi | AKTS |
|---|---|---|---|---|---|---|---|
| Fonksiyonel Analiz | MATH357 | Alan Seçmeli | 3 | 0 | 0 | 3 | 6 |
| Ön Koşul Ders(ler)i |
|---|
| MATH251 |
| Dersin Dili | İngilizce |
|---|---|
| Dersin Türü | Seçmeli Dersler |
| Dersin Seviyesi | Fen Bilimleri Yüksek Lisans |
| Ders Verilme Şekli | Yüz Yüze |
| Dersin Öğrenme ve Öğretme Teknikleri | Anlatım, Soru Yanıt, Sorun/Problem Çözme. |
| Dersin Öğretmen(ler)i |
|
| Dersin Amacı | Bu dersin amacı norm, kompaktlık ve yakınsaklık gibi fonksiyonel analiz kavramlarına tanışık olunmasını sağlamaktır. |
| Dersin Eğitim Çıktıları |
Bu dersi başarıyla tamamlayabilen öğrenciler;
|
| Dersin İçeriği | Vektör uzayları, Hamel bazı, lineer operatörler, operatörlerde denklemler, sıralı vektör uzayı, pozitif lineer fonksiyonellerin genişletilmesi, konveks fonksiyonlar, Hahn-Banach teoremi, Minkowski fonksiyoneli, ayrıklık teoremi, metrik uzaylar, süreklilik ve düzgün süreklilik, tamlık, Baire teoremi, normlu uzaylar, Banach uzayları, Banach uzayları |
Haftalık Konular ve İlgili Ön Hazırlık Çalışmaları
| Hafta | Konular | Ön Hazırlık |
|---|---|---|
| 1 | Metrik Uzayları, Açık küme, Kapalı Küme | s. 2-22 |
| 2 | Yakınsak ve Cauchy Dizileri, Tamlık | s. 23-44 |
| 3 | Vektor Uzayları, Normlu Uzayları Banach Uzayları | s. 50-66 |
| 4 | Normlu Uzayların Diğer Özellikleri Sonlu Boyutlu Normlu Uzayları Ve Altuzaylar | s. 67--75 |
| 5 | Kompaktlık ve Sonlu Boyutlu Lineer Operatörler | s. 77--90 |
| 6 | Sınırlı ve Sürekli Lineer Operatörler Lineer Fonksiyoneller | s. 91--110 |
| 7 | Ara Sınav | |
| 8 | Lineer Operatörler ve Sonlu Boyutlu Fonksiyoneller, Normlu Uzay Operatörleri, Dual Uzaylar | s. 111--125 |
| 9 | Hahn-Banach Teoremi Kompleks Değerli Vektör Uzayları için Hahn-Banach Theoremi, Normlu Uzaylar | s. 213--224 |
| 10 | Sınırlı Lineer Fonksiyonellerin C[a,b] Üzerine Uygulanması | s. 225--230 |
| 11 | Adjoint Operatör | s. 231--238 |
| 12 | Yansımalı Uzaylar | s. 239-245 |
| 13 | Ara Sınav | |
| 14 | Kategori Teoremleri Düzgün Sınırlılık Teoremi | s. 246--254 |
| 15 | Kuvvetli ve zayıf Yakınsaklık Operatörlerin ve Fonksiyonellerin Yakınsaklığı | s. 256-268 |
| 16 | Genel Tekrar |
Kaynaklar
| Ders Kitabı | 1. Introductory Functional Analysis with Applications, E. Kreyszig, 1978, John Wiley and Sons Inc. ISBN 0-471-5073-8 |
|---|---|
| Diğer Kaynaklar | 2. Elements of the Theory of Functions and Functional Analysis, A.N. Kolmogorov and S.V. Fomin, Dover, NY, 1999. ISBN: 0-486-40683-0 |
| 3. Functional Analysis, G.Bachman and L. Narici , Dover, 1991, ISBN: 0-486-40251-7 |
Değerlendirme System
| Çalışmalar | Sayı | Katkı Payı |
|---|---|---|
| Devam/Katılım | - | - |
| Laboratuar | - | - |
| Uygulama | - | - |
| Alan Çalışması | - | - |
| Derse Özgü Staj | - | - |
| Küçük Sınavlar/Stüdyo Kritiği | - | - |
| Ödevler | - | - |
| Sunum | - | - |
| Projeler | - | - |
| Rapor | - | - |
| Seminer | - | - |
| Ara Sınavlar/Ara Juri | 2 | 60 |
| Genel Sınav/Final Juri | 1 | 40 |
| Toplam | 3 | 100 |
| Yarıyıl İçi Çalışmalarının Başarı Notu Katkısı | 60 |
|---|---|
| Yarıyıl Sonu Çalışmalarının Başarı Notuna Katkısı | 40 |
| Toplam | 100 |
Kurs Kategorisi
| Temel Meslek Dersleri | X |
|---|---|
| Uzmanlık/Alan Dersleri | |
| Destek Dersleri | |
| İletişim ve Yönetim Becerileri Dersleri | |
| Aktarılabilir Beceri Dersleri |
Dersin Öğrenim Çıktılarının Program Yeterlilikleri ile İlişkisi
| # | Program Yeterlilikleri / Çıktıları | Katkı Düzeyi | ||||
|---|---|---|---|---|---|---|
| 1 | 2 | 3 | 4 | 5 | ||
| 1 | Lisans öğreniminden elde edilen yeterlilikleri temel alarak, aynı ya da farklı bir alandaki bilgileri geliştirebilme ve derinleştirebilme yeteneğine sahip olur. | X | ||||
| 2 | Bilimsel araştırma yaparak bilgiye ulaşabilme, bilgiyi değerlendirme, yorumlama ve uygulama becerisine sahip olur. | X | ||||
| 3 | Alanında özümsediği bilgiyi ve problem çözme yeteneğini disiplinlerarası çalışmalarda uygulayabilir. | X | ||||
| 4 | Alanında, bağımsız olarak, bir problem kurgulayabilir, çözüm yöntemi geliştirerek problemi çözebilir ve sonuçları değerlendirebilir. | X | ||||
| 5 | Alanındaki çalışmalarda karşılaşabileceği öngörülemeyen karmaşık durumlarda, çözümün üretilmesine yönelik sistematik yaklaşımların geliştirilmesinde bireysel ve ekip üyesi olarak sorumluluk alır. | X | ||||
| 6 | Alanı ile ilgili konularda strateji, uygulama planları ve prensipler geliştirerek elde edilen sonuçları, kalite süreçleri çerçevesinde değerlendirebilir. | X | ||||
| 7 | Alanındaki bilgiyi geliştirerek bunları bilimsel, toplumsal ve etik sorumluluk ile kullanır. | X | ||||
| 8 | Alanı ile ilgili güncel gelişmeleri inceleyerek, kendi çalışmalarını bilimsel verilerle destekler, alanındaki ve alanı dışındaki gruplara, yazılı, sözlü ve görsel olarak sistemli bir şekilde sunma becerisine sahip olur. | X | ||||
| 9 | Matematik veya uygulama alanlarındaki bilimsel çalışmaları takip ederek araştırma yapacak ve meslektaşları ile sözlü ve yazılı iletişim kuracak düzeyde İngilizce bilir. | X | ||||
| 10 | Matematik temelli yazılımları, bilişim ve iletişim teknolojilerini bilimsel amaçlı kullanabilir. | X | ||||
| 11 | Matematik veya uygulama alanları ile ilgili verilerin toplanması, yorumlanması, uygulanması ve sonuçların duyurulması aşamalarında evrensel ve toplumsal boyutlardaki etkilerini dikkate alan mesleki etik ve sorumluluk bilincine sahip olur. | X | ||||
ECTS/İş Yükü Tablosu
| Aktiviteler | Sayı | Süresi (Saat) | Toplam İş Yükü |
|---|---|---|---|
| Ders saati (Sınav haftası dahildir: 16 x toplam ders saati) | 16 | 3 | 48 |
| Laboratuar | |||
| Uygulama | |||
| Derse Özgü Staj | |||
| Alan Çalışması | |||
| Sınıf Dışı Ders Çalışma Süresi | 14 | 3 | 42 |
| Sunum/Seminer Hazırlama | |||
| Projeler | |||
| Raporlar | |||
| Ödevler | 5 | 4 | 20 |
| Küçük Sınavlar/Stüdyo Kritiği | |||
| Ara Sınavlara/Ara Juriye Hazırlanma Süresi | 2 | 12 | 24 |
| Genel Sınava/Genel Juriye Hazırlanma Süresi | 1 | 16 | 16 |
| Toplam İş Yükü | 150 | ||
