AKTSKısmi Diferansiyel Denklemler İçin Sonlu Fark Metodları

Kısmi Diferansiyel Denklemler İçin Sonlu Fark Metodları (MATH524) Ders Detayları

Ders Adı Ders Kodu Dönemi Saati Uygulama Saati Laboratuar Hours Kredi AKTS
Kısmi Diferansiyel Denklemler İçin Sonlu Fark Metodları MATH524 Seçmeli Dersler 3 0 0 3 5
Ön Koşul Ders(ler)i
Bölüm İzni
Dersin Dili İngilizce
Dersin Türü Teknik Seçmeli Grup A
Dersin Seviyesi Fen Bilimleri Yüksek Lisans
Ders Verilme Şekli Yüz Yüze
Dersin Öğrenme ve Öğretme Teknikleri Anlatım, Soru Yanıt, Sorun/Problem Çözme.
Dersin Koordinatörü
Dersin Öğretmen(ler)i
Course Assistants
Dersin Amacı Bu yüksek lisans dersi uygulamalı matematik alanında çalışan yüksek lisans öğrencilerine kısmi diferansiyel denklemlerin sayısal çözümleri için sonlu fark metotlarını anlama, oluşturma ve kullanmaları için gerekli uzmanlığı kazandırmayı amaçlayacak şekilde planlanmıştır. Üzerinde en çok durulan konular bazı model teşkil edecek kısmi diferansiyel denklemlere çeşitli sonlu fark metotlarını uygulamak, sayısal çözümleri bulmak, sayısal sonuçları değerlendirmek ve bu sonuçları sonlu farklar yönteminin tutarlılık, kararlılık ve yakınsaklığına dayanarak neden ve nasıl iyi ya da kötü sonuçlar olduklarını anlamaktır.
Dersin Eğitim Çıktıları Bu dersi başarıyla tamamlayabilen öğrenciler;
  • Bilim ve mühendislikte karşılaşılan bazı kısmi diferansiyel denklemler için uygun olan sonlu fark metodunu seçer ve uygular
  • Makul bir matematiksel titizlilikle sonlu fark metotlarını kararlılık, yakınsaklık ve tutarlılık çerçevesinde tartışır.
  • Kısmi diferansiyel denklemlerin sonlu fark metotları ile çözümünden ortaya çıkan lineer denklem sistemlerini çözer.
  • Kısmi diferansiyel denklemlerin sonlu fark metotları ile sayısal çözümü için bilgisayar programı yazar ve uygular.
Dersin İçeriği Sonlu fark metodu, parabolik denklemler: açık ve kapalı metotlar, Richardson, Dufort-Frankel ve Crank-Nicolson yöntemleri; hiperbolik denklemler: Lax-Wendroff, Crank-Nicolson, kutu ve leap-frog yöntemleri; eliptik denklemler: kısmi diferansiyel denklemlerin sonlu fark metotları ile sayısal çözümlerinde tutarlılık, kararlılık ve yakınsaklık.

Haftalık Konular ve İlgili Ön Hazırlık Çalışmaları

Hafta Konular Ön Hazırlık
1 -Kismi Diferansiyel Denklemlerin (KDD) sınıflandırılması:Parabolik,Hiperbolik ve Eliptik KDD. -Sınır koşulları -Sonlu fark metotları. Sonlu fark operatörleri [Lapidus] s:1-3, 12, 13, 28-30, 34-41, [Smith] s.1-8
2 Parabolik denklemler: -Açık metotlar -Kesme hatası, tutarlılık, doğruluk basamağı [Morton & Mayers] s.10-16
3 -Açık yöntemin yakınsaklığı -Fourier analizi ile ve matris metodu ile kararlılık [Morton & Mayers] s.16-22 [Smith] s.60-64
4 -Kapalı metotlar -Thomas algoritması -Richardson yöntemi [Morton & Mayers] s.22-26,38, 39
5 -Duforth-Frankel açık yöntemi -Sınır koşulları [Smith] s.32-40,94 [Morton & Mayers] s. 39-42
6 -Crank-Nicalson kapalı yöntemi ve kararlılığı -Kapalı yöntemleri çözmek için tekrarlamalı yöntemler [Smith].s.17-20, 64-67, 24-32,
7 -Değişken katsayılı KDD için sonlu fark yöntemleri [Morton & Mayers] s.46-51,54-56
8 Hiperbolik denklemler: -Upwind yöntemi ve yöntemin kesme hatası, kararlılığı ve yakınsaklığı - Courant, Friedrichs and Lewy (CLF) şartı [Morton & Mayers] s:89-95
9 -Lax-Wendroff yöntemi ve kararlılığı - Crank-Nicolson yöntemi ve kararlılığı [Morton & Mayers] s.100, [ Strikwerda] s.63, 77
10 Arasınav
11 -Kutu yöntemi ve doğruluk basamağı - Leap-frog yöntemi ve kararlılığı [Morton & Mayers] s.116-118, 123,124
12 Eliptik denklemler: -Model bir denklem:Poisson denklemi -Eğri sınırı üzerinde sınır koşulları [Morton & Mayers] s.194,195, 199-203
13 -Basit tekrarlamalı yöntemler [Morton & Mayers] s.237-244
14 - Alternating Direction kapalı yöntemi [Smith] s.151-153
15 Tekrar
16 Dönem Sonu Sınavı

Kaynaklar

Ders Kitabı 1. K.W. Morton, D.F. Mayers, Numerical Solutions of Partial Differential Equations, 2nd Edition, Cambridge University Press, 2005.
Diğer Kaynaklar 2. G.D. Smith, Numerical Solutions of Partial Differential Equations, Oxford University Press, 1969
3. L. Lapidus, G.F. Pinder, Numerical Solutions of Partial Differential Equations in Science and Engineering, John Wiley & Sons, Inc. 1999.
4. J.C. Strikwerda, Finite Difference Schemes and Partial Differential Equations, 2nd Edition, SIAM, 2004

Değerlendirme System

Çalışmalar Sayı Katkı Payı
Devam/Katılım - -
Laboratuar - -
Uygulama - -
Alan Çalışması - -
Derse Özgü Staj - -
Küçük Sınavlar/Stüdyo Kritiği - -
Ödevler 4 20
Sunum 1 10
Projeler 1 10
Rapor - -
Seminer - -
Ara Sınavlar/Ara Juri 1 30
Genel Sınav/Final Juri 1 30
Toplam 8 100
Yarıyıl İçi Çalışmalarının Başarı Notu Katkısı 70
Yarıyıl Sonu Çalışmalarının Başarı Notuna Katkısı 30
Toplam 100

Kurs Kategorisi

Temel Meslek Dersleri
Uzmanlık/Alan Dersleri X
Destek Dersleri
İletişim ve Yönetim Becerileri Dersleri
Aktarılabilir Beceri Dersleri

Dersin Öğrenim Çıktılarının Program Yeterlilikleri ile İlişkisi

# Program Yeterlilikleri / Çıktıları Katkı Düzeyi
1 2 3 4 5
1 Matematik, fen bilimleri ve mekatronik mühendisliği ile ilgili konularda yeterli bilgi birikimi; bu alanlardaki kuramsal ve uygulamalı bilgileri mühendislik problemlerini modelleme ve çözme için uygulayabilme becerisi. X
2 Karmaşık mekatronik mühendisliği problemlerini saptama, tanımlama, formüle etme ve çözme becerisi; bu amaçla uygun analiz ve modelleme yöntemlerini seçme ve uygulama becerisi. X
3 Karmaşık bir mekatronik mühendisliği sistemini, sürecini, cihazını veya ürünü gerçekçi kısıtlar ve koşullar altında, belirli gereksinimleri karşılayacak şekilde tasarlama becerisi; bu amaçla modern tasarım yöntemlerini uygulama becerisi; mekatronik mühendisliği kapsamında mühendislik yaratıcılığı yöntemlerini etkin bir şekilde uygulayabilme becerisi. (Gerçekçi kısıtlar ve koşullar tasarımın niteliğine göre, ekonomi, çevre sorunları, sürdürülebilirlik, üretilebilirlik, etik, sağlık, güvenlik, sosyal ve politik sorunlar gibi öğeleri içerirler.) X
4 Mekatronik mühendisliği ve robot teknolojisi uygulamaları için gerekli olan modern teknik ve araçları geliştirme, seçme ve kullanma becerisi; bilişim ve iletişim teknolojilerini etkin bir şekilde kullanma becerisi.
5 Mekatronik mühendisliği ve robot teknolojisi problemlerinin incelenmesi için deney tasarlama, deney yapma, veri toplama, sonuçları analiz etme ve yorumlama becerisi.
6 Disiplin içi ve çok disiplinli takımlarda etkin biçimde çalışabilme becerisi; bireysel çalışma becerisi; mekatronik mühendisliğinin yakın etkileşim içinde olduğu makina, elektrik/elektronik ve bilgisayar mühendislikleri ile mekatronik mühendisliğinin uygulama alanı içinde diğer mühendislik ve bilim dalları veya çalışma alanları ile etkin iletişim kurabilme becerisi, farklı disiplinlerde çalışabilme becerisi.
7 Türkçe ve İngilizce sözlü ve yazılı etkin iletişim kurma, yaratıcı ve özgün kavram ve fikirleri ifade edebilme becerisi.
8 Mekatronik mühendisliğinin uygulama çeşitliliğinin gerektirdiği şekilde değişik konularda bilgiye erişim, eleştirel bakış, yorumlama ve bilgiyi geliştirme becerisi; yaşam boyu öğrenme sonucu gelişme ve sürekli yenileme gerekliliği bilinci; bilim ve teknolojideki gelişmeleri izleme; girişimcilik, yenilikçilik ve sürdürebilir kalkınma hakkında farkındalık ve kendini sürekli yenileme becerisi.
9 Mesleki ve etik sorumluluk bilincine sahip olma, bu konuda iletişim araçlarını kullanarak meslek bilincini geliştirme ve mesleğin gelişimine katkıda bulunma yetkinliği.
10 Proje yönetimi ile risk yönetimi ve değişiklik yönetimi gibi iş hayatındaki uygulamalar hakkında bilgi ve sorumluluğu altında çalışanların bir proje çerçevesinde gelişimlerine yönelik etkinlikleri planlayabilme, yönetebilme ve liderlik yetkinliği.
11 Mekatronik mühendisliği uygulamalarının evrensel, toplumsal ve bireysel boyutlarda sağlık, çevre ve güvenlik üzerindeki etkileri ile kültürel değerler ve çağın sorunları hakkında bilgi; bu konularda mühendislik bilinci; mühendislik çözümlerinin hukuksal sonuçları konusunda farkındalık.
12 Mekatronik mühendisliği konularında, sorunları tanımlayabilme, analiz edebilme, kaynak araştırması yapabilme, veritabanları ve diğer bilgi kaynaklarını kullanarak yaptığı araştırmalara ve kanıtlara dayalı çözüm önerileri geliştirebilme ve sorunlara ilişkin çözüm önerilerini nicel ve nitel olarak aktarabilme yetkinliği.
13 Yaşadığı çevreye duyarlı ve toplumsal sorumluluk bilincine sahip, sosyal ilişkileri ve bu ilişkileri yönlendiren normları eleştirel bir bakış açısıyla inceleyen, geliştiren ve gerektiğinde değiştirebilen, toplum içinde bir birey olma ve topluma yönelik proje düzenleme, geliştirebilme ve uygulayabilme yetkinliği.
14 Mekatronik mühendisliği konularında strateji, politika ve uygulama planları geliştirebilme ve elde edilen sonuçları kalite süreçleri çerçevesinde değerlendirebilme yetkinliği.

ECTS/İş Yükü Tablosu

Aktiviteler Sayı Süresi (Saat) Toplam İş Yükü
Ders saati (Sınav haftası dahildir: 16 x toplam ders saati) 16 3 48
Laboratuar
Uygulama
Derse Özgü Staj
Alan Çalışması
Sınıf Dışı Ders Çalışma Süresi 14 2 28
Sunum/Seminer Hazırlama 1 8 8
Projeler 1 7 7
Raporlar
Ödevler 4 3 12
Küçük Sınavlar/Stüdyo Kritiği
Ara Sınavlara/Ara Juriye Hazırlanma Süresi 1 10 10
Genel Sınava/Genel Juriye Hazırlanma Süresi 1 12 12
Toplam İş Yükü 125