AKTS - Yapay Sinir Ağları ve Uygulamaları
Yapay Sinir Ağları ve Uygulamaları (EE423) Ders Detayları
Ders Adı | Ders Kodu | Dönemi | Saati | Uygulama Saati | Laboratuar Hours | Kredi | AKTS |
---|---|---|---|---|---|---|---|
Yapay Sinir Ağları ve Uygulamaları | EE423 | Alan Seçmeli | 3 | 0 | 0 | 3 | 5 |
Ön Koşul Ders(ler)i |
---|
N/A |
Dersin Dili | İngilizce |
---|---|
Dersin Türü | Seçmeli Dersler |
Dersin Seviyesi | Lisans |
Ders Verilme Şekli | Yüz Yüze |
Dersin Öğrenme ve Öğretme Teknikleri | Anlatım, Gösteri, Tartışma, Soru Yanıt, Uygulama-Alıştırma, Takım/Grup Çalışması, Beyin Fırtınası. |
Dersin Öğretmen(ler)i |
|
Dersin Amacı | •Sinir ağı sistemlerin temel kural ve tekniklerini sunmak. •Temel yapay sinir ağ modellerini ve uygulamalarını incelemek. |
Dersin Eğitim Çıktıları |
Bu dersi başarıyla tamamlayabilen öğrenciler;
|
Dersin İçeriği | Temel sinir biyolojisi, sinir ağı mimarileri ve öğrenme algoritmaları, yapay sinir ağ uygulamaları, McCulloch Pitts nöronları, tek katlı pörseptran, çok Katlı pörseptran, radyal taban fonksiyonlu ağlar, Kohonen kendini örgütleyen eşlemlemeler, öğrenen vektörel nicemleme |
Haftalık Konular ve İlgili Ön Hazırlık Çalışmaları
Hafta | Konular | Ön Hazırlık |
---|---|---|
1 | Sinir Ağları ve Tarihçesi, Biyolojik nöronlar, Yapay nöronlar | Bu haftanın konularına göz atmak |
2 | Yapay Sinir Ağları, Tek katlı pörseptran ve tek katlı pörseptranda öğrenme ve genelleştirme | Bu haftanın konularına göz atmak |
3 | Hebbian Öğrenme, Bayır İnişli Öğrenme | Bu haftanın konularına göz atmak |
4 | Genelleştirilmiş delta kuralı, Uygulamada gözönüne alınacaklar | Bu haftanın konularına göz atmak |
5 | Çok Katlı pörseptranda öğrenme, Geri yayılım Algoritması | Bu haftanın konularına göz atmak |
6 | Momentumlu Öğrenme, Eşlenik Gradyan Öğrenme | Bir önceki haftanın konularını tekrar etmek ve bu haftanın konularına göz atmak |
7 | Yanlılık ve Değişinti, Eksik Oturtma ve Aşırı Oturtma, Genelleştirmeyi iyileştirme | Bir önceki haftanın konularını tekrar etmek ve bu haftanın konularına göz atmak |
8 | Çok Katlı Pörseptranların Uygulamaları | Bu haftanın konularına göz atmak |
9 | Radyal Taban Fonksiyonlu Ağlar: Algoritmalar ve Uygulamalar | Bu haftanın konularına göz atmak |
10 | Çağrışımsal Öğrenme | Bu haftanın konularına göz atmak |
11 | Yarışmalı Öğrenme, Karşı yayılım Ağları, Grossberg ağları | Bu haftanın konularına göz atmak |
12 | Uyarlanır Rezonans Kuramı, Kararlılık | Bu haftanın konularına göz atmak |
13 | Hopfield ağlar, çift taraflı çağrışımsal hafızalar | Bu haftanın konularına göz atmak |
14 | Kendini Örgütleyen Eşlemlemeler: Algoritmalar ve Uygulamalar | Bu haftanın konularına göz atmak |
15 | Dönem sonu sınav çalışmaları | Dönem içi konuların tekrarı |
16 | Dönem sonu sınav çalışmaları | Dönem içi konuların tekrarı |
Kaynaklar
Ders Kitabı | 1. Neural Networks: A Comprehensive Foundation, Simon Haykin, Pearson Education Inc. Leicestershire U.K 1999 |
---|---|
Diğer Kaynaklar | 2. Neural Networks for Pattern Recognition, C. Bishop, Oxford University Press, 1995 |
3. Principles of Neurocomputing for Science and Engineering, F.M.Ham and I.Kostanic, McGraw Hill, 2001 |
Değerlendirme System
Çalışmalar | Sayı | Katkı Payı |
---|---|---|
Devam/Katılım | - | - |
Laboratuar | - | - |
Uygulama | - | - |
Alan Çalışması | - | - |
Derse Özgü Staj | - | - |
Küçük Sınavlar/Stüdyo Kritiği | - | - |
Ödevler | 15 | 20 |
Sunum | - | - |
Projeler | 1 | 20 |
Rapor | - | - |
Seminer | - | - |
Ara Sınavlar/Ara Juri | 2 | 30 |
Genel Sınav/Final Juri | 1 | 30 |
Toplam | 19 | 100 |
Yarıyıl İçi Çalışmalarının Başarı Notu Katkısı | 70 |
---|---|
Yarıyıl Sonu Çalışmalarının Başarı Notuna Katkısı | 30 |
Toplam | 100 |
Kurs Kategorisi
Temel Meslek Dersleri | X |
---|---|
Uzmanlık/Alan Dersleri | |
Destek Dersleri | |
İletişim ve Yönetim Becerileri Dersleri | |
Aktarılabilir Beceri Dersleri |
Dersin Öğrenim Çıktılarının Program Yeterlilikleri ile İlişkisi
# | Program Yeterlilikleri / Çıktıları | Katkı Düzeyi | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Matematik, fen bilimleri ve Elektrik-Elektronik Mühendisliği disiplinine özgü konularda yeterli bilgi birikimine sahip olur; bu alanlardaki kuramsal ve uygulamalı bilgileri, karmaşık mühendislik problemlerinin çözümünde kullanır. | X | ||||
2 | Karmaşık mühendislik problemlerini saptar, tanımlar, formüle eder ve çözer; bu amaçla uygun analiz ve modelleme yöntemlerini seçer ve uygular. | X | ||||
3 | Karmaşık bir sistemi, süreci, cihazı veya ürünü gerçekçi kısıtlar ve koşullar altında, belirli gereksinimleri karşılayacak şekilde tasarlar; bu amaçla modern tasarım yöntemlerini uygular. (Gerçekçi kısıtlar ve koşullar tasarımın niteliğine göre ekonomi, çevre sorunları, sürdürülebilirlik, üretilebilirlik, etik, sağlık, güvenlik, sosyal ve politik sorunlar gibi ögeleri içerir.) | X | ||||
4 | Mühendislik uygulamalarında karşılaşılan karmaşık problemlerin analizi ve çözümü için gerekli olan modern teknik ve araçları seçer ve kullanır; bilişim teknolojilerini etkin bir şekilde kullanır. | X | ||||
5 | Karmaşık mühendislik problemlerinin veya disipline özgü araştırma konularının incelenmesi için deney tasarlar, deney yapar, veri toplar, sonuçları analiz eder ve yorumlar. | X | ||||
6 | Disiplin içi ve çok disiplinli takımlarda etkin biçimde çalışır; bireysel çalışma yeteneğini geliştirir. | X | ||||
7 | Sözlü ve yazılı etkin iletişim kurar; en az bir yabancı dil bilgisine sahip olur; etkin rapor yazar, yazılı raporları anlar, tasarım ve üretim raporları hazırlar, etkin sunum yapar, açık ve anlaşılır talimat verir ve alır. | X | ||||
8 | Yaşam boyu öğrenmenin gerekliliği konusunda farkındalık kazanır; bilgiye erişir, bilim ve teknolojideki gelişmeleri izler ve kendini sürekli yeniler. | X | ||||
9 | Etik ilkelere uygun davranır, mesleki ve etik sorumluluk sahibi olur ve mühendislik uygulamalarında kullanılan standartlar hakkında bilgi sahibi olur. | X | ||||
10 | Proje yönetimi, risk yönetimi ve değişiklik yönetimi gibi iş hayatındaki uygulamalar hakkında bilgi sahibi olur; girişimcilik ve yenilikçilik konusunda farkındalık kazanır; sürdürülebilir kalkınma hakkında bilgi edinir. | X | ||||
11 | Mühendislik uygulamalarının evrensel ve toplumsal boyutlarda sağlık, çevre ve güvenlik üzerindeki etkilerini bilir; çağın mühendislik alanına yansıyan sorunları anlar ve mühendislik çözümlerinin hukuksal sonuçları konusunda farkındalık kazanır. | X |
ECTS/İş Yükü Tablosu
Aktiviteler | Sayı | Süresi (Saat) | Toplam İş Yükü |
---|---|---|---|
Ders saati (Sınav haftası dahildir: 16 x toplam ders saati) | 16 | 3 | 48 |
Laboratuar | |||
Uygulama | |||
Derse Özgü Staj | |||
Alan Çalışması | |||
Sınıf Dışı Ders Çalışma Süresi | 16 | 2 | 32 |
Sunum/Seminer Hazırlama | |||
Projeler | 4 | 5 | 20 |
Raporlar | |||
Ödevler | 8 | 2 | 16 |
Küçük Sınavlar/Stüdyo Kritiği | |||
Ara Sınavlara/Ara Juriye Hazırlanma Süresi | 2 | 3 | 6 |
Genel Sınava/Genel Juriye Hazırlanma Süresi | 1 | 3 | 3 |
Toplam İş Yükü | 125 |