AKTS - Makine Öğrenmesine Giriş
Makine Öğrenmesine Giriş (CMPE363) Ders Detayları
Ders Adı | Ders Kodu | Dönemi | Saati | Uygulama Saati | Laboratuar Hours | Kredi | AKTS |
---|---|---|---|---|---|---|---|
Makine Öğrenmesine Giriş | CMPE363 | Alan Seçmeli | 2 | 2 | 0 | 3 | 5 |
Ön Koşul Ders(ler)i |
---|
N/A |
Dersin Dili | İngilizce |
---|---|
Dersin Türü | Seçmeli Dersler |
Dersin Seviyesi | Lisans |
Ders Verilme Şekli | Yüz Yüze |
Dersin Öğrenme ve Öğretme Teknikleri | Anlatım. |
Dersin Öğretmen(ler)i |
|
Dersin Amacı | Bu dersin amacı; Makine öğrenmesi kavramnlarını, algoritmalarını ve bunların mühendislik alanına uygulanmasını ileri seviye kalkülüs, lineer cebir ve olasılık teorisi gerektirmeden öğretmektir. |
Dersin Eğitim Çıktıları |
Bu dersi başarıyla tamamlayabilen öğrenciler;
|
Dersin İçeriği | Yapay Zeka, Makine öğrenmesi, Denetimli Denetimsiz öğrenme, İkili Sınıflandırma, Çoklu Sınıflandırma, Kestirim, Kümeleme, Modellerin başarımını ölçmek |
Haftalık Konular ve İlgili Ön Hazırlık Çalışmaları
Hafta | Konular | Ön Hazırlık |
---|---|---|
1 | Neden Makine öğrenmesi? İlk örnek uygulama Iris çiçeğinin sınıflandırılması | Ünite 1 (ana ders kitabı) |
2 | Denetimli öğrenme: Sınıflandırma ve Kestirim | Ünite 2.1 |
3 | K-En Yakın Komşular Algoritması | Ünite 2.2 |
4 | Lineer Modeller | Ünite 2.3 |
5 | Naive Bayes Sınıflandırıcı | Ünite 2.4 |
6 | Karar Ağaçları ve Rastgele Ağaçlar | Ünite 2.5 ve 2.6 |
7 | Destek Vektör Makineleri | Ünite 2.7 |
8 | Denetimsiz öğrenme | Ünite 3.1 |
9 | Veri Dönüştürme | Ünite 3.2 |
10 | Boyut İndirgeme: Temel Bileşen Analizi (PCA) | Ünite 3.3 |
11 | Özellik Çıkarımı | Ünite. 3.4 |
12 | Kümeleme: K-Means Algoritması | Ünite 3.5 |
13 | Modellerini başarımını ölçmek: Çapraz doğrulama, birini-dışarıda-bırak, grid tarama | Ünite 5.1 |
14 | Başarımın Ölçütleri ve Puanlaması | Ünite 5.2 |
Kaynaklar
Ders Kitabı | 1. Introduction to Machine Learning with Python, A Guide for Data Scientists by Andreas C. Müller and Sarah Guido, O’Reilly Media, Inc, October 2016 |
---|---|
Diğer Kaynaklar | 2. 1. Machine Learning 101, Data Science. Nov 26, 2018 |
3. 2. Hands-on machine learning with Scikit-Learn and TensorFlow: concepts, tools, and techniques to build intelligent systems / Aurelien Geron. | |
4. 3. Introduction to Machine Learning, Ethem Alpaydin. MIT Press, 2014. |
Değerlendirme System
Çalışmalar | Sayı | Katkı Payı |
---|---|---|
Devam/Katılım | - | - |
Laboratuar | 1 | 30 |
Uygulama | - | - |
Alan Çalışması | - | - |
Derse Özgü Staj | - | - |
Küçük Sınavlar/Stüdyo Kritiği | - | - |
Ödevler | 1 | 10 |
Sunum | - | - |
Projeler | - | - |
Rapor | - | - |
Seminer | - | - |
Ara Sınavlar/Ara Juri | 1 | 30 |
Genel Sınav/Final Juri | 1 | 30 |
Toplam | 4 | 100 |
Yarıyıl İçi Çalışmalarının Başarı Notu Katkısı | 70 |
---|---|
Yarıyıl Sonu Çalışmalarının Başarı Notuna Katkısı | 30 |
Toplam | 100 |
Kurs Kategorisi
Temel Meslek Dersleri | X |
---|---|
Uzmanlık/Alan Dersleri | |
Destek Dersleri | |
İletişim ve Yönetim Becerileri Dersleri | |
Aktarılabilir Beceri Dersleri |
Dersin Öğrenim Çıktılarının Program Yeterlilikleri ile İlişkisi
# | Program Yeterlilikleri / Çıktıları | Katkı Düzeyi | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1 | Matematik, fen bilimleri ve hesaplama alanlarında yeterli bilgi birikimi kazanır; bu alanlardaki kuramsal ve uygulamalı bilgileri, bilişim sistemleriyle ilgili mühendislik problemlerinin çözümünde kullanabilir. | |||||
2 | Karmaşık mühendislik problemlerini saptar, tanımlar, formüle eder ve çözer; bu amaçla uygun analiz ve modelleme yöntemlerini seçer ve uygular. | |||||
3 | Karmaşık bir sistemi, süreci, cihazı veya ürünü gerçekçi kısıtlar ve koşullar altında, belirli gereksinimleri karşılayacak şekilde tasarlar; bu amaçla modern tasarım yöntemlerini uygular. | |||||
4 | Bilişim sistemleri mühendisliği uygulamalarında karşılaşılan karmaşık problemlerin analizi ve çözümü için gerekli olan modern teknik ve araçları geliştirir, seçer ve kullanır; bilişim teknolojilerini etkin bir şekilde kullanır. | X | ||||
5 | Karmaşık mühendislik problemlerinin veya bilişim sistemleri mühendisliği disiplinine özgü araştırma konularının incelenmesi için, deney tasarlar, deney yapar, veri toplar, sonuçları analiz eder ve yorumlar. | X | ||||
6 | Disiplin içi ve çok disiplinli takımlarda etkin biçimde görev yapabilir; bireysel olarak çalışabilir. | |||||
7 | a. Sözlü ve yazılı etkin iletişim kurar; etkin rapor yazar ve yazılı raporları anlar, tasarım ve üretim raporları hazırlayabilir, etkin sunum yapabilir, açık ve anlaşılır talimat verir ve alır. b. En az bir yabancı dil bilir. | |||||
8 | Yaşam boyu öğrenmenin gerekliliği konusunda farkındalık kazanır; bilgiye erişebilir, bilim ve teknolojideki gelişmeleri izler ve kendini sürekli yeniler. | |||||
9 | a. Etik ilkelerine uygun davranır, mesleki ve etik sorumluluk bilinci kazanır. b. Bilişim sistemleri mühendisliği uygulamalarında kullanılan standartlar hakkında bilgi edinir. | |||||
10 | a. Proje yönetimi, risk yönetimi ve değişiklik yönetimi gibi, iş hayatındaki uygulamalar hakkında bilgi edinir. b. Girişimcilik, yenilikçilik hakkında farkındalık kazanır. c. Sürdürülebilir kalkınma hakkında bilgi edinir. | |||||
11 | a. Bilişim sistemleri mühendisliği uygulamalarının evrensel ve toplumsal boyutlarda sağlık, çevre ve güvenlik üzerindeki etkileri ve çağın mühendislik alanına yansıyan sorunları hakkında bilgi edinir. b. Mühendislik çözümlerinin hukuksal sonuçları konusunda farkındalık kazanır. |
ECTS/İş Yükü Tablosu
Aktiviteler | Sayı | Süresi (Saat) | Toplam İş Yükü |
---|---|---|---|
Ders saati (Sınav haftası dahildir: 16 x toplam ders saati) | 16 | 2 | 32 |
Laboratuar | 12 | 2 | 24 |
Uygulama | |||
Derse Özgü Staj | |||
Alan Çalışması | |||
Sınıf Dışı Ders Çalışma Süresi | 16 | 1 | 16 |
Sunum/Seminer Hazırlama | |||
Projeler | |||
Raporlar | |||
Ödevler | 1 | 8 | 8 |
Küçük Sınavlar/Stüdyo Kritiği | |||
Ara Sınavlara/Ara Juriye Hazırlanma Süresi | 1 | 20 | 20 |
Genel Sınava/Genel Juriye Hazırlanma Süresi | 1 | 25 | 25 |
Toplam İş Yükü | 125 |