AKTS - Makine Öğrenmesi
Makine Öğrenmesi (ECON484) Ders Detayları
| Ders Adı | Ders Kodu | Dönemi | Saati | Uygulama Saati | Laboratuar Hours | Kredi | AKTS |
|---|---|---|---|---|---|---|---|
| Makine Öğrenmesi | ECON484 | Alan Dışı Seçmeli | 3 | 0 | 0 | 3 | 5 |
| Ön Koşul Ders(ler)i |
|---|
| N/A |
| Dersin Dili | İngilizce |
|---|---|
| Dersin Türü | Seçmeli Dersler |
| Dersin Seviyesi | Lisans |
| Ders Verilme Şekli | |
| Dersin Öğrenme ve Öğretme Teknikleri | . |
| Dersin Öğretmen(ler)i |
|
| Dersin Amacı | Bu ders makine öğrenmesi istatistiksel örüntü tanıma konularına geniş bir giriş içermektedir ve büyük veri özelliklerine sahip veri yapılarının analizinde daha hızlı karar vermeyi sağlayan yazılım teknolojilerinin anlaşılmasını amaçlamaktadır. |
| Dersin Eğitim Çıktıları |
Bu dersi başarıyla tamamlayabilen öğrenciler;
|
| Dersin İçeriği | Gözetimli ve gözetimsiz öğrenme, öğrenme teorisi, pekiştirici öğrenme ve uyarlamalı kontrol; makine öğrenmesi alanındaki robotik kontrol, veri madenciliği, otonom navigasyon, biyoinformatik, ses tanımlama, metin ve web veri işleme politika ve programlarının değerlendirmesi gibi güncel uygulamalar. |
Haftalık Konular ve İlgili Ön Hazırlık Çalışmaları
| Hafta | Konular | Ön Hazırlık |
|---|---|---|
| 1 | Giriş ve Basit Kavramlar | Ders Notları |
| 2 | Denetimli Öğrenme Kurulumu. Doğrusal Regresyon. Tartışma Bölümü: Doğrusal Cebir | Ders Notları |
| 3 | Ağırlıklı En Küçük Kareler. Lojistik Regresyon. Netwon Metodu | Ders Notları |
| 4 | Algılayıcı. Üstel Aile. Genelleştirilmiş Doğrusal Modeller. Tartışma Bölümü: Olasılık | Ders Notları |
| 5 | Gaussgil Diskriminant Analizi | Ders Notları |
| 6 | Ara Sınav | |
| 7 | Saf Bayes. Laplace Yumuşatma. Kernel Metodları Discussion Section: Python | Ders Notları |
| 8 | SVM. Kerneller | Ders Notları |
| 9 | Sinir ağı. Tartışma Bölümü: Öğrenme Teorisi | Ders Notları |
| 10 | Sapma/Varyans. Düzenlileştirme. Özellik / Model seçimi. Tartışma Bölümü: Değerlendirme Metrikleri | Ders Notları |
| 11 | ML Projeleri için Pratik Öneriler. | Ders Notları |
| 12 | K-ortalamalar. Gaussgil Karışımlar. Beklenti Maksimizasyonu. | Ders Notları |
| 13 | GMM(EM). Faktör Analizi | Ders Notları |
| 14 | Temel Bileşenler Analizi. Bağımsız Bileşen Analizi | Ders Notları |
| 15 | MDP. Bellman Denklemleri. Değer Yineleme ve Politika Yineleme. | Ders NOTLARI |
| 16 | Final Sınavı |
Kaynaklar
| Diğer Kaynaklar | 1. Ders Notları / Lecture notes available |
|---|
Değerlendirme System
| Çalışmalar | Sayı | Katkı Payı |
|---|---|---|
| Devam/Katılım | 15 | 10 |
| Laboratuar | - | - |
| Uygulama | - | - |
| Alan Çalışması | - | - |
| Derse Özgü Staj | - | - |
| Küçük Sınavlar/Stüdyo Kritiği | - | - |
| Ödevler | - | - |
| Sunum | 1 | 20 |
| Projeler | - | - |
| Rapor | - | - |
| Seminer | - | - |
| Ara Sınavlar/Ara Juri | 1 | 20 |
| Genel Sınav/Final Juri | 1 | 50 |
| Toplam | 18 | 100 |
| Yarıyıl İçi Çalışmalarının Başarı Notu Katkısı | |
|---|---|
| Yarıyıl Sonu Çalışmalarının Başarı Notuna Katkısı | 100 |
| Toplam | 100 |
Kurs Kategorisi
| Temel Meslek Dersleri | X |
|---|---|
| Uzmanlık/Alan Dersleri | |
| Destek Dersleri | |
| İletişim ve Yönetim Becerileri Dersleri | |
| Aktarılabilir Beceri Dersleri |
Dersin Öğrenim Çıktılarının Program Yeterlilikleri ile İlişkisi
| # | Program Yeterlilikleri / Çıktıları | Katkı Düzeyi | ||||
|---|---|---|---|---|---|---|
| 1 | 2 | 3 | 4 | 5 | ||
| 1 | Matematik lisans programından edindiği ileri düzeydeki kuramsal ve uygulamalı bilgileri kullanarak matematik temelli lisansüstü programlarda, kamu veya özel sektörde bilimsel çalışma ve araştırma yapmak için yeterli bilgiye sahip olur. | |||||
| 2 | Alanında edindiği kuramsal ve uygulamalı bilgileri uygun araç-gereçleri kullanarak ortaöğretime uyarlar ve aktarır. | |||||
| 3 | Alanında edindiği bilgi ve becerileri kullanarak, matematik veya uygulandığı alanlardaki güncel problemleri modelleme ve çözüm için gerekli olan matematiksel yöntemleri seçme, kullanma, geliştirme ve çözme becerisine sahip olur. | |||||
| 4 | Analitik düşünme yeteneğine sahip olur ve sonuç çıkarma sürecinde zamanı etkin kullanır. | |||||
| 5 | Bilgisayar bilimleriyle ilgili alanlarda çalışabilecek düzeyde temel yazılım bilgisine ve bilişim teknolojilerini etkin bir şekilde kullanma becerisine sahip olur. | |||||
| 6 | Karar süreçlerinin ihtiyaç duyacağı verileri toplama, analiz etme, yorumlama ve istatistiksel yöntemleri kullanabilme becerisine sahip olur. | |||||
| 7 | Matematiğin doğrudan veya dolaylı olarak kullanıldığı alanlarda çalışma yapabilecek düzeyde bilgiye sahip olur ve yaşam boyu öğrenmenin bilinci ile mesleki bilgi ve becerilerini yeniler. | |||||
| 8 | Matematiğin kullanıldığı alanlarda bireysel olarak veya takımlarda ekip üyesi olarak sorumluluk alır ve etkin biçimde çalışma becerisine sahip olur. | |||||
| 9 | Matematik veya uygulama alanlarındaki bilgileri izleyecek ve meslektaşları ile iletişim kuracak düzeyde İngilizce bilir. | |||||
| 10 | Görüş ve düşüncesini nicel ve nitel verilerle destekleyerek açık ve anlaşılabilir biçimde yazılı ve sözlü ifade eder, paydaşlarıyla iletişim kurar. | |||||
| 11 | Matematik veya uygulama alanları ile ilgili verilerin toplanması, yorumlanması, uygulanması ve sonuçların duyurulması aşamalarında evrensel ve toplumsal boyutlardaki etkilerini dikkate alan mesleki etik ve sorumluluk bilincine sahip olur. | |||||
ECTS/İş Yükü Tablosu
| Aktiviteler | Sayı | Süresi (Saat) | Toplam İş Yükü |
|---|---|---|---|
| Ders saati (Sınav haftası dahildir: 16 x toplam ders saati) | 16 | 3 | 48 |
| Laboratuar | |||
| Uygulama | |||
| Derse Özgü Staj | |||
| Alan Çalışması | |||
| Sınıf Dışı Ders Çalışma Süresi | 16 | 3 | 48 |
| Sunum/Seminer Hazırlama | 1 | 5 | 5 |
| Projeler | |||
| Raporlar | |||
| Ödevler | |||
| Küçük Sınavlar/Stüdyo Kritiği | |||
| Ara Sınavlara/Ara Juriye Hazırlanma Süresi | 1 | 10 | 10 |
| Genel Sınava/Genel Juriye Hazırlanma Süresi | 1 | 15 | 15 |
| Toplam İş Yükü | 126 | ||
